gather_models.py 6.74 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
2
3
4
5
6
"""Script to gather benchmarked models and prepare them for upload.

Usage:
python gather_models.py ${root_path} ${out_dir}
"""

7
8
9
import argparse
import glob
import json
Wenwei Zhang's avatar
Wenwei Zhang committed
10
import mmcv
11
12
13
import shutil
import subprocess
import torch
Wenwei Zhang's avatar
Wenwei Zhang committed
14
from os import path as osp
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

# build schedule look-up table to automatically find the final model
SCHEDULES_LUT = {
    '_1x_': 12,
    '_2x_': 24,
    '_20e_': 20,
    '_3x_': 36,
    '_4x_': 48,
    '_24e_': 24,
    '_6x_': 73
}

# TODO: add support for lyft dataset
RESULTS_LUT = {
    'coco': ['bbox_mAP', 'segm_mAP'],
    'nus': ['pts_bbox_NuScenes/NDS', 'NDS'],
    'kitti-3d-3class': [
        'KITTI/Overall_3D_moderate',
        'Overall_3D_moderate',
    ],
    'kitti-3d-car': ['KITTI/Car_3D_moderate_strict', 'Car_3D_moderate_strict'],
    'lyft': ['score'],
    'scannet': ['mAR_0.50'],
    'sunrgbd': ['mAR_0.50']
}


def get_model_dataset(log_json_path):
    for key in RESULTS_LUT:
        if log_json_path.find(key) != -1:
            return key


def process_checkpoint(in_file, out_file):
    checkpoint = torch.load(in_file, map_location='cpu')
    # remove optimizer for smaller file size
    if 'optimizer' in checkpoint:
        del checkpoint['optimizer']
    # if it is necessary to remove some sensitive data in checkpoint['meta'],
    # add the code here.
    torch.save(checkpoint, out_file)
    sha = subprocess.check_output(['sha256sum', out_file]).decode()
    final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
    subprocess.Popen(['mv', out_file, final_file])
    return final_file


def get_final_epoch(config):
    if config.find('grid_rcnn') != -1 and config.find('2x') != -1:
        # grid_rcnn 2x trains 25 epochs
        return 25

    for schedule_name, epoch_num in SCHEDULES_LUT.items():
        if config.find(schedule_name) != -1:
            return epoch_num


def get_best_results(log_json_path):
    dataset = get_model_dataset(log_json_path)
    max_dict = dict()
    max_memory = 0
    with open(log_json_path, 'r') as f:
        for line in f.readlines():
            log_line = json.loads(line)
            if 'mode' not in log_line.keys():
                continue

            # record memory and find best results & epochs
            if log_line['mode'] == 'train' \
                    and max_memory <= log_line['memory']:
                max_memory = log_line['memory']

            elif log_line['mode'] == 'val':
                result_dict = {
                    key: log_line[key]
                    for key in RESULTS_LUT[dataset] if key in log_line
                }
                if len(max_dict) == 0:
                    max_dict = result_dict
                    max_dict['epoch'] = log_line['epoch']
                elif all(
                    [max_dict[key] <= result_dict[key]
                     for key in result_dict]):
                    max_dict.update(result_dict)
                    max_dict['epoch'] = log_line['epoch']

        max_dict['memory'] = max_memory
        return max_dict


def parse_args():
    parser = argparse.ArgumentParser(description='Gather benchmarked models')
    parser.add_argument(
        'root',
        type=str,
        help='root path of benchmarked models to be gathered')
    parser.add_argument(
        'out', type=str, help='output path of gathered models to be stored')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    models_root = args.root
    models_out = args.out
    mmcv.mkdir_or_exist(models_out)

    # find all models in the root directory to be gathered
    raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))

    # filter configs that is not trained in the experiments dir
    used_configs = []
    for raw_config in raw_configs:
        if osp.exists(osp.join(models_root, raw_config)):
            used_configs.append(raw_config)
    print(f'Find {len(used_configs)} models to be gathered')

    # find final_ckpt and log file for trained each config
    # and parse the best performance
    model_infos = []
    for used_config in used_configs:
        exp_dir = osp.join(models_root, used_config)

        # get logs
        log_json_path = glob.glob(osp.join(exp_dir, '*.log.json'))[0]
        log_txt_path = glob.glob(osp.join(exp_dir, '*.log'))[0]
        model_performance = get_best_results(log_json_path)
        final_epoch = model_performance['epoch']
        final_model = 'epoch_{}.pth'.format(final_epoch)
        model_path = osp.join(exp_dir, final_model)

        # skip if the model is still training
        if not osp.exists(model_path):
            print(f'Expected {model_path} does not exist!')
            continue

        if model_performance is None:
            print(f'Obtained no performance for model {used_config}')
            continue

        model_time = osp.split(log_txt_path)[-1].split('.')[0]
        model_infos.append(
            dict(
                config=used_config,
                results=model_performance,
                epochs=final_epoch,
                model_time=model_time,
                log_json_path=osp.split(log_json_path)[-1]))

    # publish model for each checkpoint
    publish_model_infos = []
    for model in model_infos:
        model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
        mmcv.mkdir_or_exist(model_publish_dir)

yinchimaoliang's avatar
yinchimaoliang committed
172
173
        model_name = model['config'].split('/')[-1].rstrip(
            '.py') + '_' + model['model_time']
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        publish_model_path = osp.join(model_publish_dir, model_name)
        trained_model_path = osp.join(models_root, model['config'],
                                      'epoch_{}.pth'.format(model['epochs']))

        # convert model
        final_model_path = process_checkpoint(trained_model_path,
                                              publish_model_path)

        # copy log
        shutil.copy(
            osp.join(models_root, model['config'], model['log_json_path']),
            osp.join(model_publish_dir, f'{model_name}.log.json'))
        shutil.copy(
            osp.join(models_root, model['config'],
                     model['log_json_path'].rstrip('.json')),
            osp.join(model_publish_dir, f'{model_name}.log'))

        # copy config to guarantee reproducibility
        config_path = model['config']
        config_path = osp.join(
            'configs',
            config_path) if 'configs' not in config_path else config_path
        target_cconfig_path = osp.split(config_path)[-1]
        shutil.copy(config_path,
                    osp.join(model_publish_dir, target_cconfig_path))

        model['model_path'] = final_model_path
        publish_model_infos.append(model)

    models = dict(models=publish_model_infos)
    print(f'Totally gathered {len(publish_model_infos)} models')
    mmcv.dump(models, osp.join(models_out, 'model_info.json'))


if __name__ == '__main__':
    main()