getting_started.md 11.3 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
15
| master              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
Wenhao Wu's avatar
Wenhao Wu committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| 0.18.0              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.3              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.2              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.1              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4.0|
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
Tai-Wang's avatar
Tai-Wang committed
31
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2.0|
32
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
33

twang's avatar
twang committed
34
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
35

twang's avatar
twang committed
36
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
37

38
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
39

twang's avatar
twang committed
40
41
42
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
43
44
```

45
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
46

twang's avatar
twang committed
47
48
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
49
50
```

twang's avatar
twang committed
51
52
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
53

54
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
55
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
56

twang's avatar
twang committed
57
```python
58
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
59
60
```

twang's avatar
twang committed
61
62
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
63

twang's avatar
twang committed
64
65
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
66
67
```

68
If you build PyTorch from source instead of installing the prebuilt package,
twang's avatar
twang committed
69
you can use more CUDA versions such as 9.0.
70

71
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
72
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
73

74
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
75

Ziyi Wu's avatar
Ziyi Wu committed
76
```shell
xiliu8006's avatar
xiliu8006 committed
77
78
79
80
81
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
82
```shell
xiliu8006's avatar
xiliu8006 committed
83
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
84
```
zhangwenwei's avatar
zhangwenwei committed
85

xiliu8006's avatar
xiliu8006 committed
86
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
87
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
88

twang's avatar
twang committed
89
```shell
xiliu8006's avatar
xiliu8006 committed
90
91
92
93
94
95
96
97
98
99
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
100
```
zhangwenwei's avatar
zhangwenwei committed
101

102
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
103

twang's avatar
twang committed
104
```shell
hjin2902's avatar
hjin2902 committed
105
pip install mmdet==2.14.0
twang's avatar
twang committed
106
```
zhangwenwei's avatar
zhangwenwei committed
107

twang's avatar
twang committed
108
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
109
110

```shell
twang's avatar
twang committed
111
112
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
hjin2902's avatar
hjin2902 committed
113
git checkout v2.14.0  # switch to v2.14.0 branch
twang's avatar
twang committed
114
115
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
116
117
```

118
119
120
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
hjin2902's avatar
hjin2902 committed
121
pip install mmsegmentation==0.14.1
122
123
124
125
126
127
128
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
hjin2902's avatar
hjin2902 committed
129
git checkout v0.14.1  # switch to v0.14.1 branch
130
131
132
133
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
134

twang's avatar
twang committed
135
136
137
138
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
139

140
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
141

twang's avatar
twang committed
142
143
144
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
145

twang's avatar
twang committed
146
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
147

twang's avatar
twang committed
148
149
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
150

twang's avatar
twang committed
151
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
152

twang's avatar
twang committed
153
154
155
156
157
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
158

159
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
160

twang's avatar
twang committed
161
162
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
163

twang's avatar
twang committed
164
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
165

twang's avatar
twang committed
166
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
167

twang's avatar
twang committed
168
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
169

twang's avatar
twang committed
170
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
171

twang's avatar
twang committed
172
173
174
175
```shell
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d docker/
```
Wenwei Zhang's avatar
Wenwei Zhang committed
176

twang's avatar
twang committed
177
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
178

twang's avatar
twang committed
179
180
181
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
182

twang's avatar
twang committed
183
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
184

185
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
186

twang's avatar
twang committed
187
188
189
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
190

191
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
192
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
193

twang's avatar
twang committed
194
195
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
196

twang's avatar
twang committed
197
198
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
199

200
201
202
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
203
204
205
206
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
207
```
liyinhao's avatar
liyinhao committed
208

twang's avatar
twang committed
209
210
211
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
212

twang's avatar
twang committed
213
214
215
216
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
217
218
```

twang's avatar
twang committed
219
# Verification
liyinhao's avatar
liyinhao committed
220

221
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
222

223
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
224
225

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
226
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
227
228
229
230
231
```

Examples:

```shell
232
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
233
```
234

yinchimaoliang's avatar
yinchimaoliang committed
235
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
236
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
237

yinchimaoliang's avatar
yinchimaoliang committed
238
239
240
241
242
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

243
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
244
245
246
247
248
249
250
251
252
253
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
254

yinchimaoliang's avatar
yinchimaoliang committed
255
Examples:
zhangwenwei's avatar
zhangwenwei committed
256

yinchimaoliang's avatar
yinchimaoliang committed
257
258
259
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
260

261
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

277
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
278

twang's avatar
twang committed
279
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
280

twang's avatar
twang committed
281
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
282

liyinhao's avatar
liyinhao committed
283
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
284
285

```python
286
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
287

liyinhao's avatar
liyinhao committed
288
289
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
290
291

# build the model from a config file and a checkpoint file
292
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
293
294

# test a single image and show the results
liyinhao's avatar
liyinhao committed
295
296
297
298
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
299
```