update_infos_to_v2.py 44.8 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
5
    python tools/dataset_converters/update_infos_to_v2.py
VVsssssk's avatar
VVsssssk committed
6
        --dataset kitti
jshilong's avatar
jshilong committed
7
8
9
10
11
12
13
14
15
        --pkl ./data/kitti/kitti_infos_train.pkl
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp

16
import mmengine
jshilong's avatar
jshilong committed
17
import numpy as np
ZCMax's avatar
ZCMax committed
18
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
19

20
21
22
from mmdet3d.datasets.convert_utils import (convert_annos,
                                            get_kitti_style_2d_boxes,
                                            get_nuscenes_2d_boxes)
VVsssssk's avatar
VVsssssk committed
23
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
24
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
25

jshilong's avatar
jshilong committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


69
def get_empty_multicamera_instances(camera_types):
ZCMax's avatar
ZCMax committed
70

71
72
73
    cam_instance = dict()
    for cam_type in camera_types:
        cam_instance[cam_type] = None
ZCMax's avatar
ZCMax committed
74
75
76
    return cam_instance


jshilong's avatar
jshilong committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


130
def get_single_image_sweep(camera_types):
jshilong's avatar
jshilong committed
131
132
133
134
135
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
136
137
138
139
140
141
        ego2global=None)
    # (dict): Information of images captured by multiple cameras
    images = dict()
    for cam_type in camera_types:
        images[cam_type] = get_empty_img_info()
    single_image_sweep['images'] = images
jshilong's avatar
jshilong committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


VVsssssk's avatar
VVsssssk committed
157
158
def get_empty_standard_data_info(
        camera_types=['CAM0', 'CAM1', 'CAM2', 'CAM3', 'CAM4']):
jshilong's avatar
jshilong committed
159
160
161
162
163
164

    data_info = dict(
        # (str): Sample id of the frame.
        sample_id=None,
        # (str, optional): '000010'
        token=None,
165
        **get_single_image_sweep(camera_types),
jshilong's avatar
jshilong committed
166
167
168
169
170
171
172
173
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
174
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
199
        if key in ['instances', 'cam_sync_instances', 'cam_instances']:
jshilong's avatar
jshilong committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


222
def generate_nuscenes_camera_instances(info, nusc):
ZCMax's avatar
ZCMax committed
223
224
225
226
227
228
229
230
231
232
233

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

234
    empty_multicamera_instance = get_empty_multicamera_instances(camera_types)
ZCMax's avatar
ZCMax committed
235
236
237
238

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
239
        ann_infos = get_nuscenes_2d_boxes(
ZCMax's avatar
ZCMax committed
240
241
242
243
244
245
246
247
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
248
def update_nuscenes_infos(pkl_path, out_dir):
249
250
251
252
253
254
255
256
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
VVsssssk's avatar
VVsssssk committed
257
258
259
260
261
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
262
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
263
264
265
266
267
268
269
270
271
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
        'DATASET':
        'Nuscenes',
        'version':
        data_list['metadata']['version']
    }
ZCMax's avatar
ZCMax committed
272
273
274
275
276
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
277
278
279
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
280
            mmengine.track_iter_progress(data_list['infos'])):
281
282
        temp_data_info = get_empty_standard_data_info(
            camera_types=camera_types)
VVsssssk's avatar
VVsssssk committed
283
284
285
286
287
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
288
289
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
VVsssssk's avatar
VVsssssk committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                i, :].tolist()
            empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
            empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
            empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
362
        temp_data_info['cam_instances'] = generate_nuscenes_camera_instances(
ZCMax's avatar
ZCMax committed
363
            ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
364
365
366
367
368
369
370
371
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)

372
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
373
374


jshilong's avatar
jshilong committed
375
376
377
378
379
380
381
382
383
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
VVsssssk's avatar
VVsssssk committed
384
385
        'CLASSES': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
386
387
    }
    print(f'Reading from input file: {pkl_path}.')
388
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
389
390
    print('Start updating:')
    converted_list = []
391
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
392
393
394
395
396
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

397
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
jshilong's avatar
jshilong committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

        temp_data_info['images']['CAM2']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'point_cloud']['velodyne_path'].split('/')[-1]

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
422
423
424
425
426
427
428
429
430
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
431
432
433
434
435
436
437
438
439
440
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])
ZCMax's avatar
ZCMax committed
441
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
ZCMax's avatar
ZCMax committed
461
462
463
464
465
466
467
468
469
470
471

            dst = np.array([0.5, 0.5, 0.5])
            src = np.array([0.5, 1.0, 0.5])

            center_3d = loc + dims * (dst - src)
            center_2d = points_cam2img(
                center_3d.reshape([1, 3]), cam2img, with_depth=True)
            center_2d = center_2d.squeeze().tolist()
            empty_instance['center_2d'] = center_2d[:2]
            empty_instance['depth'] = center_2d[2]

472
            gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
jshilong's avatar
jshilong committed
473
474
475
476
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
477
478
            empty_instance['truncated'] = anns['truncated'][
                instance_id].tolist()
jshilong's avatar
jshilong committed
479
480
481
482
483
484
485
486
487
488
489
490
491
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['score'] = anns['score'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list
492
493
        cam_instances = generate_kitti_camera_instances(ori_info_dict)
        temp_data_info['cam_instances'] = cam_instances
jshilong's avatar
jshilong committed
494
495
496
497
498
499
500
501
502
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'KITTI'}, data_list=converted_list)

503
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
504
505


ZCMax's avatar
ZCMax committed
506
507
508
509
510
511
512
513
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {'CLASSES': ('table', 'chair', 'sofa', 'bookcase', 'board')}
    print(f'Reading from input file: {pkl_path}.')
514
    data_list = mmengine.load(pkl_path)
ZCMax's avatar
ZCMax committed
515
516
    print('Start updating:')
    converted_list = []
517
    for i, ori_info_dict in enumerate(mmengine.track_iter_progress(data_list)):
ZCMax's avatar
ZCMax committed
518
        temp_data_info = get_empty_standard_data_info()
519
        temp_data_info['sample_idx'] = i
ZCMax's avatar
ZCMax committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

                    if anns['class'][instance_id] < len(METAINFO['CLASSES']):
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
                            METAINFO['CLASSES'][anns['class'][instance_id]])
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'S3DIS'}, data_list=converted_list)

564
    mmengine.dump(converted_data_info, out_path, 'pkl')
ZCMax's avatar
ZCMax committed
565
566


jshilong's avatar
jshilong committed
567
568
569
570
571
572
573
574
575
576
577
578
579
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES':
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
580
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
581
582
    print('Start updating:')
    converted_list = []
583
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict['annos']
        temp_data_info['axis_align_matrix'] = anns['axis_align_matrix'].tolist(
        )
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()

                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1

                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
619
620
621
622
623
624
625
626
627
628
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'SCANNET'}, data_list=converted_list)

629
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
630
631
632
633
634
635
636
637
638
639
640
641
642


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
643
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
644
645
    print('Start updating:')
    converted_list = []
646
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
        temp_data_info['images']['CAM0']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

        anns = ori_info_dict['annos']
zhangshilong's avatar
zhangshilong committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                    empty_instance['bbox_label'] = empty_instance[
                        'bbox_label_3d']
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1
                    empty_instance['bbox_label'] = -1
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
688
689
690
691
692
693
694
695
696
697
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'SUNRGBD'}, data_list=converted_list)

698
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
699
700


VVsssssk's avatar
VVsssssk committed
701
702
703
704
705
706
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
707
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
708
709
710
711
712
713
714
715
716
717
718
719
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
        'DATASET':
        'Nuscenes',
        'version':
        data_list['metadata']['version']
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
720
            mmengine.track_iter_progress(data_list['infos'])):
VVsssssk's avatar
VVsssssk committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)

802
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
803
804


805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
def update_waymo_infos(pkl_path, out_dir):
    # the input pkl is based on the
    # pkl generated in the waymo cam only challenage.
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_SIDE_RIGHT',
        'CAM_SIDE_LEFT',
    ]
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
        'CLASSES': ('Car', 'Pedestrian', 'Cyclist', 'Sign'),
    }
    print(f'Reading from input file: {pkl_path}.')
826
    data_list = mmengine.load(pkl_path)
827
828
    print('Start updating:')
    converted_list = []
829
    for ori_info_dict in mmengine.track_iter_progress(data_list):
830
831
832
833
        temp_data_info = get_empty_standard_data_info(camera_types)

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']
834
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

        # calib matrix
        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['cam2img'] =\
                 ori_info_dict['calib'][f'P{cam_idx}'].tolist()

        for cam_idx, cam_key in enumerate(camera_types):
            rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
            velo_to_cam = 'Tr_velo_to_cam'
            if cam_idx != 0:
                velo_to_cam += str(cam_idx)
            Trv2c = ori_info_dict['calib'][velo_to_cam].astype(np.float32)

            lidar2cam = rect @ Trv2c
            temp_data_info['images'][cam_key]['lidar2cam'] = lidar2cam.tolist()
            temp_data_info['images'][cam_key]['lidar2img'] = (
                ori_info_dict['calib'][f'P{cam_idx}'] @ lidar2cam).tolist()

        # image path
        base_img_path = ori_info_dict['image']['image_path'].split('/')[-1]

        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['timestamp'] = ori_info_dict[
                'timestamp']
            temp_data_info['images'][cam_key]['img_path'] = base_img_path

        h, w = ori_info_dict['image']['image_shape']

        # for potential usage
        temp_data_info['images'][camera_types[0]]['height'] = h
        temp_data_info['images'][camera_types[0]]['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
            'timestamp']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'point_cloud']['velodyne_path'].split('/')[-1]

        # TODO discuss the usage of Tr_velo_to_cam in lidar
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)

        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        # temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
        #     'R0_rect'].astype(np.float32).tolist()

        # for the sweeps part:
        temp_data_info['timestamp'] = ori_info_dict['timestamp']
        temp_data_info['ego2global'] = ori_info_dict['pose']

        for ori_sweep in ori_info_dict['sweeps']:
            # lidar sweeps
            lidar_sweep = get_single_lidar_sweep()
            lidar_sweep['ego2global'] = ori_sweep['pose']
            lidar_sweep['timestamp'] = ori_sweep['timestamp']
            lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'velodyne_path'].split('/')[-1]
            # image sweeps
            image_sweep = get_single_image_sweep(camera_types)
            image_sweep['ego2global'] = ori_sweep['pose']
            image_sweep['timestamp'] = ori_sweep['timestamp']
            img_path = ori_sweep['image_path'].split('/')[-1]
            for cam_idx, cam_key in enumerate(camera_types):
                image_sweep['images'][cam_key]['img_path'] = img_path

            temp_data_info['lidar_sweeps'].append(lidar_sweep)
            temp_data_info['image_sweeps'].append(image_sweep)

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list

        # waymo provide the labels that sync with cam
        anns = ori_info_dict['cam_sync_annos']
        num_instances = len(anns['name'])
        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['cam_sync_instances'] = instance_list

        cam_instances = generate_waymo_camera_instances(
            ori_info_dict, camera_types)
        temp_data_info['cam_instances'] = cam_instances

        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'Waymo'}, data_list=converted_list)

1001
    mmengine.dump(converted_data_info, out_path, 'pkl')
1002
1003


1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
def generate_kitti_camera_instances(ori_info_dict):

    cam_key = 'CAM2'
    empty_camera_instances = get_empty_multicamera_instances([cam_key])
    annos = copy.deepcopy(ori_info_dict['annos'])
    ann_infos = get_kitti_style_2d_boxes(
        ori_info_dict, occluded=[0, 1, 2, 3], annos=annos)
    empty_camera_instances[cam_key] = ann_infos

    return empty_camera_instances


1016
1017
1018
1019
1020
1021
1022
1023
1024
def generate_waymo_camera_instances(ori_info_dict, cam_keys):

    empty_multicamera_instances = get_empty_multicamera_instances(cam_keys)

    for cam_idx, cam_key in enumerate(cam_keys):
        annos = copy.deepcopy(ori_info_dict['cam_sync_annos'])
        if cam_idx != 0:
            annos = convert_annos(ori_info_dict, cam_idx)

1025
1026
        ann_infos = get_kitti_style_2d_boxes(
            ori_info_dict, cam_idx, occluded=[0], annos=annos, dataset='waymo')
1027
1028
1029
1030
1031

        empty_multicamera_instances[cam_key] = ann_infos
    return empty_multicamera_instances


jshilong's avatar
jshilong committed
1032
1033
1034
1035
1036
1037
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
1038
        '--pkl-path',
jshilong's avatar
jshilong committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


VVsssssk's avatar
VVsssssk committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
def update_pkl_infos(dataset, out_dir, pkl_path):
    if dataset.lower() == 'kitti':
        update_kitti_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'waymo':
        update_waymo_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=pkl_path, out_dir=out_dir)
jshilong's avatar
jshilong committed
1067
    else:
VVsssssk's avatar
VVsssssk committed
1068
        raise NotImplementedError(f'Do not support convert {dataset} to v2.')
jshilong's avatar
jshilong committed
1069
1070
1071


if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
1072
1073
1074
1075
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
    update_pkl_infos(
1076
        dataset=args.dataset, out_dir=args.out_dir, pkl_path=args.pkl)