test_nuscenes_dataset.py 2.95 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmengine.registry import TRANSFORMS
5
from mmengine.structures import InstanceData
VVsssssk's avatar
VVsssssk committed
6
7

from mmdet3d.datasets import NuScenesDataset
zhangshilong's avatar
zhangshilong committed
8
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
VVsssssk's avatar
VVsssssk committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


def _generate_nus_dataset_config():
    data_root = 'tests/data/nuscenes'
    ann_file = 'nus_info.pkl'
    classes = [
        'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
        'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
    ]
    if 'Identity' not in TRANSFORMS:

        @TRANSFORMS.register_module()
        class Identity(BaseTransform):

            def transform(self, info):
VVsssssk's avatar
VVsssssk committed
24
                packed_input = dict(data_samples=Det3DDataSample())
VVsssssk's avatar
VVsssssk committed
25
26
                if 'ann_info' in info:
                    packed_input[
VVsssssk's avatar
VVsssssk committed
27
28
29
                        'data_samples'].gt_instances_3d = InstanceData()
                    packed_input[
                        'data_samples'].gt_instances_3d.labels_3d = info[
VVsssssk's avatar
VVsssssk committed
30
31
32
33
34
35
36
                            'ann_info']['gt_labels_3d']
                return packed_input

    pipeline = [
        dict(type='Identity'),
    ]
    modality = dict(use_lidar=True, use_camera=True)
37
38
39
40
    data_prefix = dict(
        pts='samples/LIDAR_TOP',
        img='samples/CAM_BACK_LEFT',
        sweeps='sweeps/LIDAR_TOP')
VVsssssk's avatar
VVsssssk committed
41
42
43
44
45
46
47
48
49
    return data_root, ann_file, classes, data_prefix, pipeline, modality


def test_getitem():
    np.random.seed(0)
    data_root, ann_file, classes, data_prefix, pipeline, modality = \
        _generate_nus_dataset_config()

    nus_dataset = NuScenesDataset(
ZCMax's avatar
ZCMax committed
50
51
        data_root=data_root,
        ann_file=ann_file,
VVsssssk's avatar
VVsssssk committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        data_prefix=data_prefix,
        pipeline=pipeline,
        metainfo=dict(CLASSES=classes),
        modality=modality)

    nus_dataset.prepare_data(0)
    input_dict = nus_dataset.get_data_info(0)
    # assert the the path should contains data_prefix and data_root
    assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path']
    assert input_dict['lidar_points'][
        'lidar_path'] == 'tests/data/nuscenes/samples/LIDAR_TOP/' \
                         'n015-2018-08-02-17-16-37+0800__LIDAR_TOP__' \
                         '1533201470948018.pcd.bin'
    for cam_id, img_info in input_dict['images'].items():
        if 'img_path' in img_info:
            assert data_prefix['img'] in img_info['img_path']
            assert data_root in img_info['img_path']

    ann_info = nus_dataset.parse_ann_info(input_dict)

    # assert the keys in ann_info and the type
    assert 'gt_labels_3d' in ann_info
    assert ann_info['gt_labels_3d'].dtype == np.int64
    assert len(ann_info['gt_labels_3d']) == 37

    assert 'gt_bboxes_3d' in ann_info
    assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes)

    assert len(nus_dataset.metainfo['CLASSES']) == 10

    assert input_dict['token'] == 'fd8420396768425eabec9bdddf7e64b6'
    assert input_dict['timestamp'] == 1533201470.448696