formating.py 8.38 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
from typing import List, Sequence, Union
jshilong's avatar
jshilong committed
3

4
import mmengine
zhangwenwei's avatar
zhangwenwei committed
5
import numpy as np
zhangshilong's avatar
zhangshilong committed
6
import torch
jshilong's avatar
jshilong committed
7
from mmcv import BaseTransform
8
from mmengine.structures import InstanceData
zhangshilong's avatar
zhangshilong committed
9
from numpy import dtype
zhangwenwei's avatar
zhangwenwei committed
10

11
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
12
13
from mmdet3d.structures import BaseInstance3DBoxes, Det3DDataSample, PointData
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
14
15


zhangshilong's avatar
zhangshilong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def to_tensor(
    data: Union[torch.Tensor, np.ndarray, Sequence, int,
                float]) -> torch.Tensor:
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.

    Returns:
        torch.Tensor: the converted data.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        if data.dtype is dtype('float64'):
            data = data.astype(np.float32)
        return torch.from_numpy(data)
38
    elif isinstance(data, Sequence) and not mmengine.is_str(data):
zhangshilong's avatar
zhangshilong committed
39
40
41
42
43
44
45
46
47
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.')


48
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
49
50
51
52
53
54
55
class Pack3DDetInputs(BaseTransform):
    INPUTS_KEYS = ['points', 'img']
    INSTANCEDATA_3D_KEYS = [
        'gt_bboxes_3d', 'gt_labels_3d', 'attr_labels', 'depths', 'centers_2d'
    ]
    INSTANCEDATA_2D_KEYS = [
        'gt_bboxes',
zhangshilong's avatar
zhangshilong committed
56
        'gt_bboxes_labels',
jshilong's avatar
jshilong committed
57
58
59
60
61
62
    ]

    SEG_KEYS = [
        'gt_seg_map', 'pts_instance_mask', 'pts_semantic_mask',
        'gt_semantic_seg'
    ]
zhangwenwei's avatar
zhangwenwei committed
63

jshilong's avatar
jshilong committed
64
65
    def __init__(
        self,
66
        keys: tuple,
67
68
69
70
71
72
73
74
        meta_keys: tuple = ('img_path', 'ori_shape', 'img_shape', 'lidar2img',
                            'depth2img', 'cam2img', 'pad_shape',
                            'scale_factor', 'flip', 'pcd_horizontal_flip',
                            'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d',
                            'img_norm_cfg', 'num_pts_feats', 'pcd_trans',
                            'sample_idx', 'pcd_scale_factor', 'pcd_rotation',
                            'pcd_rotation_angle', 'lidar_path',
                            'transformation_3d_flow', 'trans_mat',
75
76
77
                            'affine_aug', 'sweep_img_metas', 'ori_cam2img',
                            'cam2global', 'crop_offset', 'img_crop_offset',
                            'resize_img_shape', 'lidar2cam', 'ori_lidar2img',
78
79
                            'num_ref_frames', 'num_views', 'ego2global')
    ) -> None:
jshilong's avatar
jshilong committed
80
81
        self.keys = keys
        self.meta_keys = meta_keys
zhangwenwei's avatar
zhangwenwei committed
82

jshilong's avatar
jshilong committed
83
84
85
86
    def _remove_prefix(self, key: str) -> str:
        if key.startswith('gt_'):
            key = key[3:]
        return key
zhangwenwei's avatar
zhangwenwei committed
87

jshilong's avatar
jshilong committed
88
89
90
91
    def transform(self, results: Union[dict,
                                       List[dict]]) -> Union[dict, List[dict]]:
        """Method to pack the input data. when the value in this dict is a
        list, it usually is in Augmentations Testing.
92
93

        Args:
jshilong's avatar
jshilong committed
94
            results (dict | list[dict]): Result dict from the data pipeline.
95
96

        Returns:
jshilong's avatar
jshilong committed
97
            dict | List[dict]:
jshilong's avatar
jshilong committed
98
99
100
101
102
103
104

            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

105
            - 'data_samples' (obj:`Det3DDataSample`): The annotation info of
106
              the sample.
107
        """
jshilong's avatar
jshilong committed
108
109
        # augtest
        if isinstance(results, list):
110
111
112
            if len(results) == 1:
                # simple test
                return self.pack_single_results(results[0])
jshilong's avatar
jshilong committed
113
114
115
116
117
118
119
120
121
122
            pack_results = []
            for single_result in results:
                pack_results.append(self.pack_single_results(single_result))
            return pack_results
        # norm training and simple testing
        elif isinstance(results, dict):
            return self.pack_single_results(results)
        else:
            raise NotImplementedError

123
    def pack_single_results(self, results: dict) -> dict:
jshilong's avatar
jshilong committed
124
125
126
127
128
129
130
131
        """Method to pack the single input data. when the value in this dict is
        a list, it usually is in Augmentations Testing.

        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict: A dict contains
jshilong's avatar
jshilong committed
132

jshilong's avatar
jshilong committed
133
134
135
136
137
138
            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

139
            - 'data_samples' (:obj:`Det3DDataSample`): The annotation info
140
              of the sample.
jshilong's avatar
jshilong committed
141
        """
jshilong's avatar
jshilong committed
142
143
        # Format 3D data
        if 'points' in results:
jshilong's avatar
jshilong committed
144
145
            if isinstance(results['points'], BasePoints):
                results['points'] = results['points'].tensor
jshilong's avatar
jshilong committed
146

zhangwenwei's avatar
zhangwenwei committed
147
148
149
150
151
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
jshilong's avatar
jshilong committed
152
                results['img'] = to_tensor(imgs)
zhangwenwei's avatar
zhangwenwei committed
153
            else:
jshilong's avatar
jshilong committed
154
155
156
                img = results['img']
                if len(img.shape) < 3:
                    img = np.expand_dims(img, -1)
157
158
                results['img'] = to_tensor(
                    np.ascontiguousarray(img.transpose(2, 0, 1)))
jshilong's avatar
jshilong committed
159

zhangwenwei's avatar
zhangwenwei committed
160
        for key in [
161
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
zhangshilong's avatar
zhangshilong committed
162
163
                'gt_bboxes_labels', 'attr_labels', 'pts_instance_mask',
                'pts_semantic_mask', 'centers_2d', 'depths', 'gt_labels_3d'
zhangwenwei's avatar
zhangwenwei committed
164
165
166
167
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
jshilong's avatar
jshilong committed
168
                results[key] = [to_tensor(res) for res in results[key]]
zhangwenwei's avatar
zhangwenwei committed
169
            else:
jshilong's avatar
jshilong committed
170
                results[key] = to_tensor(results[key])
171
        if 'gt_bboxes_3d' in results:
jshilong's avatar
jshilong committed
172
173
            if not isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = to_tensor(results['gt_bboxes_3d'])
174

zhangwenwei's avatar
zhangwenwei committed
175
        if 'gt_semantic_seg' in results:
jshilong's avatar
jshilong committed
176
177
178
179
            results['gt_semantic_seg'] = to_tensor(
                results['gt_semantic_seg'][None])
        if 'gt_seg_map' in results:
            results['gt_seg_map'] = results['gt_seg_map'][None, ...]
wangtai's avatar
wangtai committed
180

jshilong's avatar
jshilong committed
181
182
183
        data_sample = Det3DDataSample()
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()
ZCMax's avatar
ZCMax committed
184
        gt_pts_seg = PointData()
zhangwenwei's avatar
zhangwenwei committed
185

zhangwenwei's avatar
zhangwenwei committed
186
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
187
188
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
189
                img_metas[key] = results[key]
jshilong's avatar
jshilong committed
190
        data_sample.set_metainfo(img_metas)
191

jshilong's avatar
jshilong committed
192
        inputs = {}
zhangwenwei's avatar
zhangwenwei committed
193
        for key in self.keys:
jshilong's avatar
jshilong committed
194
195
196
197
198
199
            if key in results:
                if key in self.INPUTS_KEYS:
                    inputs[key] = results[key]
                elif key in self.INSTANCEDATA_3D_KEYS:
                    gt_instances_3d[self._remove_prefix(key)] = results[key]
                elif key in self.INSTANCEDATA_2D_KEYS:
zhangshilong's avatar
zhangshilong committed
200
201
202
203
                    if key == 'gt_bboxes_labels':
                        gt_instances['labels'] = results[key]
                    else:
                        gt_instances[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
204
                elif key in self.SEG_KEYS:
ZCMax's avatar
ZCMax committed
205
                    gt_pts_seg[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
206
207
208
209
210
211
212
213
                else:
                    raise NotImplementedError(f'Please modified '
                                              f'`Pack3DDetInputs` '
                                              f'to put {key} to '
                                              f'corresponding field')

        data_sample.gt_instances_3d = gt_instances_3d
        data_sample.gt_instances = gt_instances
ZCMax's avatar
ZCMax committed
214
        data_sample.gt_pts_seg = gt_pts_seg
jshilong's avatar
jshilong committed
215
216
217
218
219
220
        if 'eval_ann_info' in results:
            data_sample.eval_ann_info = results['eval_ann_info']
        else:
            data_sample.eval_ann_info = None

        packed_results = dict()
221
        packed_results['data_samples'] = data_sample
jshilong's avatar
jshilong committed
222
223
224
225
226
        packed_results['inputs'] = inputs

        return packed_results

    def __repr__(self) -> str:
227
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
228
        repr_str = self.__class__.__name__
jshilong's avatar
jshilong committed
229
230
        repr_str += f'(keys={self.keys})'
        repr_str += f'(meta_keys={self.meta_keys})'
zhangwenwei's avatar
zhangwenwei committed
231
        return repr_str