formating.py 8.35 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
from typing import List, Sequence, Union
jshilong's avatar
jshilong committed
3

4
import mmengine
zhangwenwei's avatar
zhangwenwei committed
5
import numpy as np
zhangshilong's avatar
zhangshilong committed
6
import torch
jshilong's avatar
jshilong committed
7
from mmcv import BaseTransform
8
from mmengine.structures import InstanceData
zhangshilong's avatar
zhangshilong committed
9
from numpy import dtype
zhangwenwei's avatar
zhangwenwei committed
10

11
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
12
13
from mmdet3d.structures import BaseInstance3DBoxes, Det3DDataSample, PointData
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
14
15


zhangshilong's avatar
zhangshilong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def to_tensor(
    data: Union[torch.Tensor, np.ndarray, Sequence, int,
                float]) -> torch.Tensor:
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.

    Returns:
        torch.Tensor: the converted data.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        if data.dtype is dtype('float64'):
            data = data.astype(np.float32)
        return torch.from_numpy(data)
38
    elif isinstance(data, Sequence) and not mmengine.is_str(data):
zhangshilong's avatar
zhangshilong committed
39
40
41
42
43
44
45
46
47
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.')


48
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
49
50
51
52
53
54
55
class Pack3DDetInputs(BaseTransform):
    INPUTS_KEYS = ['points', 'img']
    INSTANCEDATA_3D_KEYS = [
        'gt_bboxes_3d', 'gt_labels_3d', 'attr_labels', 'depths', 'centers_2d'
    ]
    INSTANCEDATA_2D_KEYS = [
        'gt_bboxes',
zhangshilong's avatar
zhangshilong committed
56
        'gt_bboxes_labels',
jshilong's avatar
jshilong committed
57
58
59
60
61
62
    ]

    SEG_KEYS = [
        'gt_seg_map', 'pts_instance_mask', 'pts_semantic_mask',
        'gt_semantic_seg'
    ]
zhangwenwei's avatar
zhangwenwei committed
63

jshilong's avatar
jshilong committed
64
65
    def __init__(
        self,
66
67
68
69
70
71
72
73
        meta_keys: tuple = ('img_path', 'ori_shape', 'img_shape', 'lidar2img',
                            'depth2img', 'cam2img', 'pad_shape',
                            'scale_factor', 'flip', 'pcd_horizontal_flip',
                            'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d',
                            'img_norm_cfg', 'num_pts_feats', 'pcd_trans',
                            'sample_idx', 'pcd_scale_factor', 'pcd_rotation',
                            'pcd_rotation_angle', 'lidar_path',
                            'transformation_3d_flow', 'trans_mat',
74
75
76
77
                            'affine_aug', 'sweep_img_metas', 'ori_cam2img',
                            'cam2global', 'crop_offset', 'img_crop_offset',
                            'resize_img_shape', 'lidar2cam', 'ori_lidar2img',
                            'num_ref_frames', 'num_views', 'ego2global')) -> None:
jshilong's avatar
jshilong committed
78
79
        self.keys = keys
        self.meta_keys = meta_keys
zhangwenwei's avatar
zhangwenwei committed
80

jshilong's avatar
jshilong committed
81
82
83
84
    def _remove_prefix(self, key: str) -> str:
        if key.startswith('gt_'):
            key = key[3:]
        return key
zhangwenwei's avatar
zhangwenwei committed
85

jshilong's avatar
jshilong committed
86
87
88
89
    def transform(self, results: Union[dict,
                                       List[dict]]) -> Union[dict, List[dict]]:
        """Method to pack the input data. when the value in this dict is a
        list, it usually is in Augmentations Testing.
90
91

        Args:
jshilong's avatar
jshilong committed
92
            results (dict | list[dict]): Result dict from the data pipeline.
93
94

        Returns:
jshilong's avatar
jshilong committed
95
            dict | List[dict]:
jshilong's avatar
jshilong committed
96
97
98
99
100
101
102

            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

103
            - 'data_samples' (obj:`Det3DDataSample`): The annotation info of
104
              the sample.
105
        """
jshilong's avatar
jshilong committed
106
107
        # augtest
        if isinstance(results, list):
108
109
110
            if len(results) == 1:
                # simple test
                return self.pack_single_results(results[0])
jshilong's avatar
jshilong committed
111
112
113
114
115
116
117
118
119
120
            pack_results = []
            for single_result in results:
                pack_results.append(self.pack_single_results(single_result))
            return pack_results
        # norm training and simple testing
        elif isinstance(results, dict):
            return self.pack_single_results(results)
        else:
            raise NotImplementedError

121
    def pack_single_results(self, results: dict) -> dict:
jshilong's avatar
jshilong committed
122
123
124
125
126
127
128
129
        """Method to pack the single input data. when the value in this dict is
        a list, it usually is in Augmentations Testing.

        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict: A dict contains
jshilong's avatar
jshilong committed
130

jshilong's avatar
jshilong committed
131
132
133
134
135
136
            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

137
            - 'data_samples' (:obj:`Det3DDataSample`): The annotation info
138
              of the sample.
jshilong's avatar
jshilong committed
139
        """
jshilong's avatar
jshilong committed
140
141
        # Format 3D data
        if 'points' in results:
jshilong's avatar
jshilong committed
142
143
            if isinstance(results['points'], BasePoints):
                results['points'] = results['points'].tensor
jshilong's avatar
jshilong committed
144

zhangwenwei's avatar
zhangwenwei committed
145
146
147
148
149
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
jshilong's avatar
jshilong committed
150
                results['img'] = to_tensor(imgs)
zhangwenwei's avatar
zhangwenwei committed
151
            else:
jshilong's avatar
jshilong committed
152
153
154
                img = results['img']
                if len(img.shape) < 3:
                    img = np.expand_dims(img, -1)
155
156
                results['img'] = to_tensor(
                    np.ascontiguousarray(img.transpose(2, 0, 1)))
jshilong's avatar
jshilong committed
157

zhangwenwei's avatar
zhangwenwei committed
158
        for key in [
159
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
zhangshilong's avatar
zhangshilong committed
160
161
                'gt_bboxes_labels', 'attr_labels', 'pts_instance_mask',
                'pts_semantic_mask', 'centers_2d', 'depths', 'gt_labels_3d'
zhangwenwei's avatar
zhangwenwei committed
162
163
164
165
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
jshilong's avatar
jshilong committed
166
                results[key] = [to_tensor(res) for res in results[key]]
zhangwenwei's avatar
zhangwenwei committed
167
            else:
jshilong's avatar
jshilong committed
168
                results[key] = to_tensor(results[key])
169
        if 'gt_bboxes_3d' in results:
jshilong's avatar
jshilong committed
170
171
            if not isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = to_tensor(results['gt_bboxes_3d'])
172

zhangwenwei's avatar
zhangwenwei committed
173
        if 'gt_semantic_seg' in results:
jshilong's avatar
jshilong committed
174
175
176
177
            results['gt_semantic_seg'] = to_tensor(
                results['gt_semantic_seg'][None])
        if 'gt_seg_map' in results:
            results['gt_seg_map'] = results['gt_seg_map'][None, ...]
wangtai's avatar
wangtai committed
178

jshilong's avatar
jshilong committed
179
180
181
        data_sample = Det3DDataSample()
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()
ZCMax's avatar
ZCMax committed
182
        gt_pts_seg = PointData()
zhangwenwei's avatar
zhangwenwei committed
183

zhangwenwei's avatar
zhangwenwei committed
184
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
185
186
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
187
                img_metas[key] = results[key]
jshilong's avatar
jshilong committed
188
        data_sample.set_metainfo(img_metas)
189

jshilong's avatar
jshilong committed
190
        inputs = {}
zhangwenwei's avatar
zhangwenwei committed
191
        for key in self.keys:
jshilong's avatar
jshilong committed
192
193
194
195
196
197
            if key in results:
                if key in self.INPUTS_KEYS:
                    inputs[key] = results[key]
                elif key in self.INSTANCEDATA_3D_KEYS:
                    gt_instances_3d[self._remove_prefix(key)] = results[key]
                elif key in self.INSTANCEDATA_2D_KEYS:
zhangshilong's avatar
zhangshilong committed
198
199
200
201
                    if key == 'gt_bboxes_labels':
                        gt_instances['labels'] = results[key]
                    else:
                        gt_instances[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
202
                elif key in self.SEG_KEYS:
ZCMax's avatar
ZCMax committed
203
                    gt_pts_seg[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
204
205
206
207
208
209
210
211
                else:
                    raise NotImplementedError(f'Please modified '
                                              f'`Pack3DDetInputs` '
                                              f'to put {key} to '
                                              f'corresponding field')

        data_sample.gt_instances_3d = gt_instances_3d
        data_sample.gt_instances = gt_instances
ZCMax's avatar
ZCMax committed
212
        data_sample.gt_pts_seg = gt_pts_seg
jshilong's avatar
jshilong committed
213
214
215
216
217
218
        if 'eval_ann_info' in results:
            data_sample.eval_ann_info = results['eval_ann_info']
        else:
            data_sample.eval_ann_info = None

        packed_results = dict()
219
        packed_results['data_samples'] = data_sample
jshilong's avatar
jshilong committed
220
221
222
223
224
        packed_results['inputs'] = inputs

        return packed_results

    def __repr__(self) -> str:
225
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
226
        repr_str = self.__class__.__name__
jshilong's avatar
jshilong committed
227
228
        repr_str += f'(keys={self.keys})'
        repr_str += f'(meta_keys={self.meta_keys})'
zhangwenwei's avatar
zhangwenwei committed
229
        return repr_str