README.md 4.51 KB
Newer Older
twang's avatar
twang committed
1
2
3
4
# SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds

## Introduction

5
6
[ALGORITHM]

7
We implement PointPillars with Shape-aware grouping heads used in the SSN and provide the results and checkpoints on the nuScenes and Lyft dataset.
twang's avatar
twang committed
8
9
10
11
12
13
14
15
16
17
18
19

```
@inproceedings{zhu2020ssn,
  title={SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds},
  author={Zhu, Xinge and Ma, Yuexin and Wang, Tai and Xu, Yan and Shi, Jianping and Lin, Dahua},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2020}
}
```

## Results

20
21
22
23
24
25
### NuScenes

|  Backbone   | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.76|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)|
|[SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py)|2x|9.62||41.56|54.83|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20201023_193737-5fda3f00.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20201023_193737.log.json)|
26
[RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||41.15|55.20|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json)|
27
28
|[RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py)|2x|10.26||46.95|58.24|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20201024_232447-7af3d8c8.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20201024_232447.log.json)|

twang's avatar
twang committed
29
30
31
32
33
34
### Lyft

|  Backbone   | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_lyft-3d.py)|2x|||13.4|13.4||
|[SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py)|2x|8.30||17.4|17.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20201016_220844-3058d9fc.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20201016_220844.log.json)|
35
|[RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py)|2x|9.98||18.1|18.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d_20201025_213155-4532096c.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d_20201025_213155.log.json)|
twang's avatar
twang committed
36
37
38
39
40
41

Note:

The main difference of the shape-aware grouping heads with the original SECOND FPN heads is that the former groups objects with similar sizes and shapes together, and design shape-specific heads for each group. Heavier heads (with more convolutions and large strides) are designed for large objects while smaller heads for small objects. Note that there may appear different feature map sizes in the outputs, so an anchor generator tailored to these feature maps is also needed in the implementation.

Users could try other settings in terms of the head design. Here we basically refer to the implementation [HERE](https://github.com/xinge008/SSN).