waymoD5-3d-3class.py 5.73 KB
Newer Older
Wenwei Zhang's avatar
Wenwei Zhang committed
1
2
3
4
# dataset settings
# D5 in the config name means the whole dataset is divided into 5 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
5
# data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/'
Wenwei Zhang's avatar
Wenwei Zhang committed
6
data_root = 'data/waymo/kitti_format/'
7
8
9
10
11
12
13

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/'

Jingwei Zhang's avatar
Jingwei Zhang committed
14
# Method 2: Use backend_args, file_client_args in versions before 1.1.0
15
# backend_args = dict(
16
#     backend='petrel',
17
18
19
20
21
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None
Wenwei Zhang's avatar
Wenwei Zhang committed
22
23

class_names = ['Car', 'Pedestrian', 'Cyclist']
24
metainfo = dict(classes=class_names)
25

Wenwei Zhang's avatar
Wenwei Zhang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'waymo_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
    classes=class_names,
    sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10),
    points_loader=dict(
        type='LoadPointsFromFile',
Wenhao Wu's avatar
Wenhao Wu committed
39
        coord_type='LIDAR',
40
        load_dim=6,
41
42
43
        use_dim=[0, 1, 2, 3, 4],
        backend_args=backend_args),
    backend_args=backend_args)
Wenwei Zhang's avatar
Wenwei Zhang committed
44
45

train_pipeline = [
46
47
48
49
50
51
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=6,
        use_dim=5,
        backend_args=backend_args),
52
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
53
    # dict(type='ObjectSample', db_sampler=db_sampler),
Wenwei Zhang's avatar
Wenwei Zhang committed
54
55
56
57
58
59
60
61
62
63
64
65
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
66
67
68
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
Wenwei Zhang's avatar
Wenwei Zhang committed
69
70
]
test_pipeline = [
71
72
73
74
75
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=6,
        use_dim=5,
76
        backend_args=backend_args),
Wenwei Zhang's avatar
Wenwei Zhang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
90
91
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
92
93
94
95
    dict(
        type='Pack3DDetInputs',
        keys=['points'],
        meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp'])
Wenwei Zhang's avatar
Wenwei Zhang committed
96
]
97
98
99
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
100
101
102
103
104
105
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=6,
        use_dim=5,
        backend_args=backend_args),
106
107
108
109
    dict(
        type='Pack3DDetInputs',
        keys=['points'],
        meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp'])
110
]
Wenwei Zhang's avatar
Wenwei Zhang committed
111

112
113
114
115
116
117
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
Wenwei Zhang's avatar
Wenwei Zhang committed
118
119
120
121
122
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
123
            ann_file='waymo_infos_train.pkl',
124
125
            data_prefix=dict(
                pts='training/velodyne', sweeps='training/velodyne'),
Wenwei Zhang's avatar
Wenwei Zhang committed
126
127
128
            pipeline=train_pipeline,
            modality=input_modality,
            test_mode=False,
129
            metainfo=metainfo,
Wenwei Zhang's avatar
Wenwei Zhang committed
130
131
132
133
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
            box_type_3d='LiDAR',
            # load one frame every five frames
134
            load_interval=5,
135
            backend_args=backend_args)))
136
137
138
139
140
141
142
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
Wenwei Zhang's avatar
Wenwei Zhang committed
143
144
        type=dataset_type,
        data_root=data_root,
145
        data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'),
146
147
        ann_file='waymo_infos_val.pkl',
        pipeline=eval_pipeline,
Wenwei Zhang's avatar
Wenwei Zhang committed
148
149
        modality=input_modality,
        test_mode=True,
150
        metainfo=metainfo,
151
        box_type_3d='LiDAR',
152
        backend_args=backend_args))
153
154
155
156
157
158
159
160

test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
Wenwei Zhang's avatar
Wenwei Zhang committed
161
162
        type=dataset_type,
        data_root=data_root,
163
        data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'),
164
165
        ann_file='waymo_infos_val.pkl',
        pipeline=eval_pipeline,
Wenwei Zhang's avatar
Wenwei Zhang committed
166
167
        modality=input_modality,
        test_mode=True,
168
        metainfo=metainfo,
169
        box_type_3d='LiDAR',
170
        backend_args=backend_args))
Wenwei Zhang's avatar
Wenwei Zhang committed
171

172
val_evaluator = dict(
173
    type='WaymoMetric', waymo_bin_file='./data/waymo/waymo_format/gt.bin')
174
test_evaluator = val_evaluator
175
176
177
178

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')