getting_started.md 10.8 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
hjin2902's avatar
hjin2902 committed
15
| master              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
Tai-Wang's avatar
Tai-Wang committed
16
| 0.17.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
Tai-Wang's avatar
Tai-Wang committed
17
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
hjin2902's avatar
hjin2902 committed
18
19
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4|
20
21
22
23
24
25
26
27
28
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.4|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.4|
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2|
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
29

twang's avatar
twang committed
30
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
31

twang's avatar
twang committed
32
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
33

34
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
35

twang's avatar
twang committed
36
37
38
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
39
40
```

41
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
42

twang's avatar
twang committed
43
44
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
45
46
```

twang's avatar
twang committed
47
48
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
49

50
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
51
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
52

twang's avatar
twang committed
53
```python
54
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
55
56
```

twang's avatar
twang committed
57
58
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
59

twang's avatar
twang committed
60
61
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
62
63
```

twang's avatar
twang committed
64
65
If you build PyTorch from source instead of installing the prebuilt pacakge,
you can use more CUDA versions such as 9.0.
66

67
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
68
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
69

70
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
71

Ziyi Wu's avatar
Ziyi Wu committed
72
```shell
xiliu8006's avatar
xiliu8006 committed
73
74
75
76
77
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
78
```shell
xiliu8006's avatar
xiliu8006 committed
79
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
80
```
zhangwenwei's avatar
zhangwenwei committed
81

xiliu8006's avatar
xiliu8006 committed
82
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
83
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
84

twang's avatar
twang committed
85
```shell
xiliu8006's avatar
xiliu8006 committed
86
87
88
89
90
91
92
93
94
95
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
96
```
zhangwenwei's avatar
zhangwenwei committed
97

98
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
99

twang's avatar
twang committed
100
```shell
hjin2902's avatar
hjin2902 committed
101
pip install mmdet==2.14.0
twang's avatar
twang committed
102
```
zhangwenwei's avatar
zhangwenwei committed
103

twang's avatar
twang committed
104
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
105
106

```shell
twang's avatar
twang committed
107
108
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
hjin2902's avatar
hjin2902 committed
109
git checkout v2.14.0  # switch to v2.14.0 branch
twang's avatar
twang committed
110
111
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
112
113
```

114
115
116
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
hjin2902's avatar
hjin2902 committed
117
pip install mmsegmentation==0.14.1
118
119
120
121
122
123
124
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
hjin2902's avatar
hjin2902 committed
125
git checkout v0.14.1  # switch to v0.14.1 branch
126
127
128
129
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
130

twang's avatar
twang committed
131
132
133
134
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
135

136
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
137

twang's avatar
twang committed
138
139
140
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
141

twang's avatar
twang committed
142
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
143

twang's avatar
twang committed
144
145
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
146

twang's avatar
twang committed
147
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
148

twang's avatar
twang committed
149
150
151
152
153
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
154

155
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
156

twang's avatar
twang committed
157
158
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
159

twang's avatar
twang committed
160
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
161

twang's avatar
twang committed
162
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
163

twang's avatar
twang committed
164
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
165

twang's avatar
twang committed
166
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
167

twang's avatar
twang committed
168
169
170
171
```shell
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d docker/
```
Wenwei Zhang's avatar
Wenwei Zhang committed
172

twang's avatar
twang committed
173
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
174

twang's avatar
twang committed
175
176
177
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
178

twang's avatar
twang committed
179
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
180

181
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
182

twang's avatar
twang committed
183
184
185
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
186

187
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
188
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
189

twang's avatar
twang committed
190
191
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
192

twang's avatar
twang committed
193
194
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
195

196
197
198
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
199
200
201
202
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
203
```
liyinhao's avatar
liyinhao committed
204

twang's avatar
twang committed
205
206
207
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
208

twang's avatar
twang committed
209
210
211
212
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
213
214
```

twang's avatar
twang committed
215
# Verification
liyinhao's avatar
liyinhao committed
216

217
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
218

219
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
220
221

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
222
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
223
224
225
226
227
```

Examples:

```shell
228
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
229
```
230

yinchimaoliang's avatar
yinchimaoliang committed
231
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
232
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
233

yinchimaoliang's avatar
yinchimaoliang committed
234
235
236
237
238
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

239
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
240
241
242
243
244
245
246
247
248
249
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
250

yinchimaoliang's avatar
yinchimaoliang committed
251
Examples:
zhangwenwei's avatar
zhangwenwei committed
252

yinchimaoliang's avatar
yinchimaoliang committed
253
254
255
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
256

257
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

273
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
274

twang's avatar
twang committed
275
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
276

twang's avatar
twang committed
277
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
278

liyinhao's avatar
liyinhao committed
279
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
280
281

```python
282
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
283

liyinhao's avatar
liyinhao committed
284
285
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
286
287

# build the model from a config file and a checkpoint file
288
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
289
290

# test a single image and show the results
liyinhao's avatar
liyinhao committed
291
292
293
294
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
295
```