train.py 7.68 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
from __future__ import division
zhangwenwei's avatar
zhangwenwei committed
2

zhangwenwei's avatar
zhangwenwei committed
3
4
import argparse
import copy
5
import logging
zhangwenwei's avatar
zhangwenwei committed
6
import mmcv
zhangwenwei's avatar
zhangwenwei committed
7
8
9
import os
import time
import torch
Wenhao Wu's avatar
Wenhao Wu committed
10
import warnings
zww's avatar
zww committed
11
from mmcv import Config, DictAction
Wenhao Wu's avatar
Wenhao Wu committed
12
from mmcv.runner import get_dist_info, init_dist
zhangwenwei's avatar
zhangwenwei committed
13
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
14
15
16
17

from mmdet3d import __version__
from mmdet3d.datasets import build_dataset
from mmdet3d.models import build_detector
zhangwenwei's avatar
zhangwenwei committed
18
from mmdet3d.utils import collect_env, get_root_logger
zhangwenwei's avatar
zhangwenwei committed
19
from mmdet.apis import set_random_seed, train_detector
zhangwenwei's avatar
zhangwenwei committed
20
21
22
23
24


def parse_args():
    parser = argparse.ArgumentParser(description='Train a detector')
    parser.add_argument('config', help='train config file path')
zhangwenwei's avatar
zhangwenwei committed
25
    parser.add_argument('--work-dir', help='the dir to save logs and models')
zhangwenwei's avatar
zhangwenwei committed
26
    parser.add_argument(
zhangwenwei's avatar
zhangwenwei committed
27
        '--resume-from', help='the checkpoint file to resume from')
zhangwenwei's avatar
zhangwenwei committed
28
    parser.add_argument(
zww's avatar
zww committed
29
        '--no-validate',
zhangwenwei's avatar
zhangwenwei committed
30
        action='store_true',
zww's avatar
zww committed
31
        help='whether not to evaluate the checkpoint during training')
32
33
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
zhangwenwei's avatar
zhangwenwei committed
34
35
36
37
        '--gpus',
        type=int,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
38
39
40
41
42
43
    group_gpus.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
zww's avatar
zww committed
49
    parser.add_argument(
Wenhao Wu's avatar
Wenhao Wu committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        '--options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file (deprecate), '
        'change to --cfg-options instead.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

Wenhao Wu's avatar
Wenhao Wu committed
80
81
82
83
84
85
86
87
    if args.options and args.cfg_options:
        raise ValueError(
            '--options and --cfg-options cannot be both specified, '
            '--options is deprecated in favor of --cfg-options')
    if args.options:
        warnings.warn('--options is deprecated in favor of --cfg-options')
        args.cfg_options = args.options

zhangwenwei's avatar
zhangwenwei committed
88
89
90
91
92
93
94
    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
Wenhao Wu's avatar
Wenhao Wu committed
95
96
97
98
99
100
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
zww's avatar
zww committed
101

zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
116
117
118
119
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
zhangwenwei's avatar
zhangwenwei committed
120
121
122

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
123
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
129
130

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
Wenhao Wu's avatar
Wenhao Wu committed
131
132
133
        # re-set gpu_ids with distributed training mode
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)
zhangwenwei's avatar
zhangwenwei committed
134
135
136

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
Wenhao Wu's avatar
Wenhao Wu committed
137
138
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
zhangwenwei's avatar
zhangwenwei committed
139
140
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
zww's avatar
zww committed
141
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
zhangwenwei's avatar
zhangwenwei committed
142
143
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

144
145
146
147
    # add a logging filter
    logging_filter = logging.Filter('mmdet')
    logging_filter.filter = lambda record: record.find('mmdet') != -1

zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
152
    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
zww's avatar
zww committed
153
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
zhangwenwei's avatar
zhangwenwei committed
154
155
156
157
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info
Wenhao Wu's avatar
Wenhao Wu committed
158
    meta['config'] = cfg.pretty_text
zhangwenwei's avatar
zhangwenwei committed
159
160

    # log some basic info
zww's avatar
zww committed
161
162
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')
zhangwenwei's avatar
zhangwenwei committed
163
164
165

    # set random seeds
    if args.seed is not None:
zww's avatar
zww committed
166
167
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
zhangwenwei's avatar
zhangwenwei committed
168
169
170
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed
Wenhao Wu's avatar
Wenhao Wu committed
171
    meta['exp_name'] = osp.basename(args.config)
zhangwenwei's avatar
zhangwenwei committed
172
173

    model = build_detector(
174
175
176
177
        cfg.model,
        train_cfg=cfg.get('train_cfg'),
        test_cfg=cfg.get('test_cfg'))

zww's avatar
zww committed
178
    logger.info(f'Model:\n{model}')
zhangwenwei's avatar
zhangwenwei committed
179
180
181
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
182
183
184
185
186
187
188
189
190
        # in case we use a dataset wrapper
        if 'dataset' in cfg.data.train:
            val_dataset.pipeline = cfg.data.train.dataset.pipeline
        else:
            val_dataset.pipeline = cfg.data.train.pipeline
        # set test_mode=False here in deep copied config
        # which do not affect AP/AR calculation later
        # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow  # noqa
        val_dataset.test_mode = False
zhangwenwei's avatar
zhangwenwei committed
191
192
193
194
195
196
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__,
zww's avatar
zww committed
197
            config=cfg.pretty_text,
zhangwenwei's avatar
zhangwenwei committed
198
199
200
201
202
203
204
205
            CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
    train_detector(
        model,
        datasets,
        cfg,
        distributed=distributed,
zww's avatar
zww committed
206
        validate=(not args.no_validate),
zhangwenwei's avatar
zhangwenwei committed
207
208
209
210
211
212
        timestamp=timestamp,
        meta=meta)


if __name__ == '__main__':
    main()