base_points.py 16.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
3
import torch
4
import warnings
5
6
from abc import abstractmethod

7
8
from ..bbox.structures.utils import rotation_3d_in_axis

9
10
11
12
13
14

class BasePoints(object):
    """Base class for Points.

    Args:
        tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix.
15
16
17
18
        points_dim (int, optional): Number of the dimension of a point.
            Each row is (x, y, z). Defaults to 3.
        attribute_dims (dict, optional): Dictionary to indicate the
            meaning of extra dimension. Defaults to None.
19
20
21
22
23

    Attributes:
        tensor (torch.Tensor): Float matrix of N x points_dim.
        points_dim (int): Integer indicating the dimension of a point.
            Each row is (x, y, z, ...).
24
        attribute_dims (bool): Dictionary to indicate the meaning of extra
25
            dimension. Defaults to None.
26
        rotation_axis (int): Default rotation axis for points rotation.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    """

    def __init__(self, tensor, points_dim=3, attribute_dims=None):
        if isinstance(tensor, torch.Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that
            # does not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, points_dim)).to(
                dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == \
            points_dim, tensor.size()

        self.tensor = tensor
        self.points_dim = points_dim
        self.attribute_dims = attribute_dims
46
        self.rotation_axis = 0
47
48
49

    @property
    def coord(self):
50
        """torch.Tensor: Coordinates of each point in shape (N, 3)."""
51
52
        return self.tensor[:, :3]

53
54
55
56
57
58
59
60
61
62
63
    @coord.setter
    def coord(self, tensor):
        """Set the coordinates of each point."""
        try:
            tensor = tensor.reshape(self.shape[0], 3)
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        self.tensor[:, :3] = tensor

64
65
    @property
    def height(self):
66
67
        """torch.Tensor:
            A vector with height of each point in shape (N, 1), or None."""
68
69
70
71
72
73
        if self.attribute_dims is not None and \
                'height' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['height']]
        else:
            return None

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    @height.setter
    def height(self, tensor):
        """Set the height of each point."""
        try:
            tensor = tensor.reshape(self.shape[0])
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        if self.attribute_dims is not None and \
                'height' in self.attribute_dims.keys():
            self.tensor[:, self.attribute_dims['height']] = tensor
        else:
            # add height attribute
            if self.attribute_dims is None:
                self.attribute_dims = dict()
            attr_dim = self.shape[1]
            self.tensor = torch.cat([self.tensor, tensor.unsqueeze(1)], dim=1)
            self.attribute_dims.update(dict(height=attr_dim))
            self.points_dim += 1

95
96
    @property
    def color(self):
97
98
        """torch.Tensor:
            A vector with color of each point in shape (N, 3), or None."""
99
100
101
102
103
104
        if self.attribute_dims is not None and \
                'color' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['color']]
        else:
            return None

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    @color.setter
    def color(self, tensor):
        """Set the color of each point."""
        try:
            tensor = tensor.reshape(self.shape[0], 3)
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if tensor.max() >= 256 or tensor.min() < 0:
            warnings.warn('point got color value beyond [0, 255]')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        if self.attribute_dims is not None and \
                'color' in self.attribute_dims.keys():
            self.tensor[:, self.attribute_dims['color']] = tensor
        else:
            # add color attribute
            if self.attribute_dims is None:
                self.attribute_dims = dict()
            attr_dim = self.shape[1]
            self.tensor = torch.cat([self.tensor, tensor], dim=1)
            self.attribute_dims.update(
                dict(color=[attr_dim, attr_dim + 1, attr_dim + 2]))
            self.points_dim += 3

129
130
131
132
133
    @property
    def shape(self):
        """torch.Shape: Shape of points."""
        return self.tensor.shape

134
    def shuffle(self):
135
136
137
138
139
140
141
142
        """Shuffle the points.

        Returns:
            torch.Tensor: The shuffled index.
        """
        idx = torch.randperm(self.__len__(), device=self.tensor.device)
        self.tensor = self.tensor[idx]
        return idx
143

144
    def rotate(self, rotation, axis=None):
145
146
147
        """Rotate points with the given rotation matrix or angle.

        Args:
148
            rotation (float | np.ndarray | torch.Tensor): Rotation matrix
149
                or angle.
150
            axis (int, optional): Axis to rotate at. Defaults to None.
151
152
153
154
        """
        if not isinstance(rotation, torch.Tensor):
            rotation = self.tensor.new_tensor(rotation)
        assert rotation.shape == torch.Size([3, 3]) or \
155
            rotation.numel() == 1, f'invalid rotation shape {rotation.shape}'
156

157
158
159
        if axis is None:
            axis = self.rotation_axis

160
        if rotation.numel() == 1:
161
162
163
164
            rotated_points, rot_mat_T = rotation_3d_in_axis(
                self.tensor[:, :3][None], rotation, axis=axis, return_mat=True)
            self.tensor[:, :3] = rotated_points.squeeze(0)
            rot_mat_T = rot_mat_T.squeeze(0)
165
        else:
166
167
168
            # rotation.numel() == 9
            self.tensor[:, :3] = self.tensor[:, :3] @ rotation
            rot_mat_T = rotation
169

170
171
        return rot_mat_T

172
173
    @abstractmethod
    def flip(self, bev_direction='horizontal'):
174
175
176
177
178
        """Flip the points along given BEV direction.

        Args:
            bev_direction (str): Flip direction (horizontal or vertical).
        """
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        pass

    def translate(self, trans_vector):
        """Translate points with the given translation vector.

        Args:
            trans_vector (np.ndarray, torch.Tensor): Translation
                vector of size 3 or nx3.
        """
        if not isinstance(trans_vector, torch.Tensor):
            trans_vector = self.tensor.new_tensor(trans_vector)
        trans_vector = trans_vector.squeeze(0)
        if trans_vector.dim() == 1:
            assert trans_vector.shape[0] == 3
        elif trans_vector.dim() == 2:
            assert trans_vector.shape[0] == self.tensor.shape[0] and \
                trans_vector.shape[1] == 3
        else:
            raise NotImplementedError(
198
199
                f'Unsupported translation vector of shape {trans_vector.shape}'
            )
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        self.tensor[:, :3] += trans_vector

    def in_range_3d(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                (x_min, y_min, z_min, x_max, y_max, z_max)

        Note:
            In the original implementation of SECOND, checking whether
            a box in the range checks whether the points are in a convex
            polygon, we try to reduce the burden for simpler cases.

        Returns:
215
            torch.Tensor: A binary vector indicating whether each point is
216
217
218
219
220
221
222
223
224
225
                inside the reference range.
        """
        in_range_flags = ((self.tensor[:, 0] > point_range[0])
                          & (self.tensor[:, 1] > point_range[1])
                          & (self.tensor[:, 2] > point_range[2])
                          & (self.tensor[:, 0] < point_range[3])
                          & (self.tensor[:, 1] < point_range[4])
                          & (self.tensor[:, 2] < point_range[5]))
        return in_range_flags

226
227
228
229
230
    @property
    def bev(self):
        """torch.Tensor: BEV of the points in shape (N, 2)."""
        return self.tensor[:, [0, 1]]

231
232
233
234
235
236
237
238
    def in_range_bev(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                in order of (x_min, y_min, x_max, y_max).

        Returns:
239
            torch.Tensor: Indicating whether each point is inside
240
241
                the reference range.
        """
242
243
244
245
246
        in_range_flags = ((self.bev[:, 0] > point_range[0])
                          & (self.bev[:, 1] > point_range[1])
                          & (self.bev[:, 1] < point_range[2])
                          & (self.bev[:, 1] < point_range[3]))
        return in_range_flags
247
248
249
250
251
252
253

    @abstractmethod
    def convert_to(self, dst, rt_mat=None):
        """Convert self to ``dst`` mode.

        Args:
            dst (:obj:`CoordMode`): The target Box mode.
254
255
256
            rt_mat (np.ndarray | torch.Tensor, optional): The rotation and
                translation matrix between different coordinates.
                Defaults to None.
257
258
259
260
261
                The conversion from `src` coordinates to `dst` coordinates
                usually comes along the change of sensors, e.g., from camera
                to LiDAR. This requires a transformation matrix.

        Returns:
262
            :obj:`BasePoints`: The converted box of the same type
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                in the `dst` mode.
        """
        pass

    def scale(self, scale_factor):
        """Scale the points with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the points.
        """
        self.tensor[:, :3] *= scale_factor

    def __getitem__(self, item):
        """
        Note:
            The following usage are allowed:
            1. `new_points = points[3]`:
                return a `Points` that contains only one point.
            2. `new_points = points[2:10]`:
                return a slice of points.
            3. `new_points = points[vector]`:
                where vector is a torch.BoolTensor with `length = len(points)`.
                Nonzero elements in the vector will be selected.
286
287
            4. `new_points = points[3:11, vector]`:
                return a slice of points and attribute dims.
288
289
            5. `new_points = points[4:12, 2]`:
                return a slice of points with single attribute.
290
291
292
293
            Note that the returned Points might share storage with this Points,
            subject to Pytorch's indexing semantics.

        Returns:
294
            :obj:`BasePoints`: A new object of
295
                :class:`BasePoints` after indexing.
296
297
298
299
300
301
302
        """
        original_type = type(self)
        if isinstance(item, int):
            return original_type(
                self.tensor[item].view(1, -1),
                points_dim=self.points_dim,
                attribute_dims=self.attribute_dims)
303
304
305
        elif isinstance(item, tuple) and len(item) == 2:
            if isinstance(item[1], slice):
                start = 0 if item[1].start is None else item[1].start
306
307
                stop = self.tensor.shape[1] if \
                    item[1].stop is None else item[1].stop
308
                step = 1 if item[1].step is None else item[1].step
meng-zha's avatar
meng-zha committed
309
                item = list(item)
310
                item[1] = list(range(start, stop, step))
meng-zha's avatar
meng-zha committed
311
                item = tuple(item)
312
313
314
315
            elif isinstance(item[1], int):
                item = list(item)
                item[1] = [item[1]]
                item = tuple(item)
316
317
318
319
320
321
322
            p = self.tensor[item[0], item[1]]

            keep_dims = list(
                set(item[1]).intersection(set(range(3, self.tensor.shape[1]))))
            if self.attribute_dims is not None:
                attribute_dims = self.attribute_dims.copy()
                for key in self.attribute_dims.keys():
323
324
325
                    cur_attribute_dims = attribute_dims[key]
                    if isinstance(cur_attribute_dims, int):
                        cur_attribute_dims = [cur_attribute_dims]
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                    intersect_attr = list(
                        set(cur_attribute_dims).intersection(set(keep_dims)))
                    if len(intersect_attr) == 1:
                        attribute_dims[key] = intersect_attr[0]
                    elif len(intersect_attr) > 1:
                        attribute_dims[key] = intersect_attr
                    else:
                        attribute_dims.pop(key)
            else:
                attribute_dims = None
        elif isinstance(item, (slice, np.ndarray, torch.Tensor)):
            p = self.tensor[item]
            attribute_dims = self.attribute_dims
        else:
            raise NotImplementedError(f'Invalid slice {item}!')

342
343
344
        assert p.dim() == 2, \
            f'Indexing on Points with {item} failed to return a matrix!'
        return original_type(
345
            p, points_dim=p.shape[1], attribute_dims=attribute_dims)
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def __len__(self):
        """int: Number of points in the current object."""
        return self.tensor.shape[0]

    def __repr__(self):
        """str: Return a strings that describes the object."""
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
    def cat(cls, points_list):
        """Concatenate a list of Points into a single Points.

        Args:
360
            points_list (list[:obj:`BasePoints`]): List of points.
361
362

        Returns:
363
            :obj:`BasePoints`: The concatenated Points.
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        """
        assert isinstance(points_list, (list, tuple))
        if len(points_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(points, cls) for points in points_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned points never share storage with input
        cat_points = cls(
            torch.cat([p.tensor for p in points_list], dim=0),
            points_dim=points_list[0].tensor.shape[1],
            attribute_dims=points_list[0].attribute_dims)
        return cat_points

    def to(self, device):
        """Convert current points to a specific device.

        Args:
            device (str | :obj:`torch.device`): The name of the device.

        Returns:
385
            :obj:`BasePoints`: A new boxes object on the
386
387
388
389
390
391
392
393
394
395
396
397
                specific device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.to(device),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    def clone(self):
        """Clone the Points.

        Returns:
398
            :obj:`BasePoints`: Box object with the same properties
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
                as self.
        """
        original_type = type(self)
        return original_type(
            self.tensor.clone(),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    @property
    def device(self):
        """str: The device of the points are on."""
        return self.tensor.device

    def __iter__(self):
        """Yield a point as a Tensor of shape (4,) at a time.

        Returns:
            torch.Tensor: A point of shape (4,).
        """
        yield from self.tensor

    def new_point(self, data):
        """Create a new point object with data.

423
        The new point and its tensor has the similar properties
424
425
426
427
428
429
            as self and self.tensor, respectively.

        Args:
            data (torch.Tensor | numpy.array | list): Data to be copied.

        Returns:
430
            :obj:`BasePoints`: A new point object with ``data``,
431
432
433
434
435
436
437
438
439
                the object's other properties are similar to ``self``.
        """
        new_tensor = self.tensor.new_tensor(data) \
            if not isinstance(data, torch.Tensor) else data.to(self.device)
        original_type = type(self)
        return original_type(
            new_tensor,
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)