train_mixins.py 12.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch

zhangwenwei's avatar
zhangwenwei committed
4
from mmdet3d.core import limit_period
zhangwenwei's avatar
zhangwenwei committed
5
from mmdet.core import images_to_levels, multi_apply
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22


class AnchorTrainMixin(object):

    def anchor_target_3d(self,
                         anchor_list,
                         gt_bboxes_list,
                         input_metas,
                         gt_bboxes_ignore_list=None,
                         gt_labels_list=None,
                         label_channels=1,
                         num_classes=1,
                         sampling=True):
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
zhangwenwei's avatar
zhangwenwei committed
23
            gt_bboxes_list (list[:obj:`BaseInstance3DBoxes`]): Ground truth
wuyuefeng's avatar
wuyuefeng committed
24
                bboxes of each image.
wuyuefeng's avatar
wuyuefeng committed
25
26
            input_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (None | list): Ignore list of gt bboxes.
liyinhao's avatar
liyinhao committed
27
            gt_labels_list (list[torch.Tensor]): Gt labels of batches.
wuyuefeng's avatar
wuyuefeng committed
28
29
30
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.
zhangwenwei's avatar
zhangwenwei committed
31
32

        Returns:
wuyuefeng's avatar
wuyuefeng committed
33
            tuple: Anchor targets.
zhangwenwei's avatar
zhangwenwei committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        """
        num_imgs = len(input_metas)
        assert len(anchor_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [
            anchors.view(-1, self.box_code_size).size(0)
            for anchors in anchor_list[0]
        ]
        # concat all level anchors and flags to a single tensor
        for i in range(num_imgs):
            anchor_list[i] = torch.cat(anchor_list[i])

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]

        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         all_dir_targets, all_dir_weights, pos_inds_list,
         neg_inds_list) = multi_apply(
             self.anchor_target_3d_single,
             anchor_list,
             gt_bboxes_list,
             gt_bboxes_ignore_list,
             gt_labels_list,
             input_metas,
             label_channels=label_channels,
             num_classes=num_classes,
             sampling=sampling)

        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors)
        dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors)
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, dir_targets_list, dir_weights_list,
                num_total_pos, num_total_neg)

    def anchor_target_3d_single(self,
                                anchors,
                                gt_bboxes,
                                gt_bboxes_ignore,
                                gt_labels,
                                input_meta,
                                label_channels=1,
                                num_classes=1,
                                sampling=True):
wuyuefeng's avatar
wuyuefeng committed
95
96
97
        """Compute targets of anchors in single batch.

        Args:
liyinhao's avatar
liyinhao committed
98
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
99
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
100
101
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
102
103
104
105
106
107
108
109
            input_meta (dict): Meta info of each image.
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
            tuple: Anchor targets.
        """
zhangwenwei's avatar
zhangwenwei committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if isinstance(self.bbox_assigner, list):
            feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2)
            rot_angles = anchors.size(-2)
            assert len(self.bbox_assigner) == anchors.size(-3)
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[..., i, :, :].reshape(
                    -1, self.box_code_size)
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
zhangwenwei's avatar
zhangwenwei committed
127
                        label_channels, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
128
129
130
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
zhangwenwei's avatar
zhangwenwei committed
131
132
                        gt_labels, input_meta, label_channels, num_classes,
                        sampling)
zhangwenwei's avatar
zhangwenwei committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels.reshape(feat_size, 1, rot_angles))
                total_label_weights.append(
                    label_weights.reshape(feat_size, 1, rot_angles))
                total_bbox_targets.append(
                    bbox_targets.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_dir_targets.append(
                    dir_targets.reshape(feat_size, 1, rot_angles))
                total_dir_weights.append(
                    dir_weights.reshape(feat_size, 1, rot_angles))
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=-2).reshape(-1)
            total_label_weights = torch.cat(
                total_label_weights, dim=-2).reshape(-1)
            total_bbox_targets = torch.cat(
                total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1))
            total_bbox_weights = torch.cat(
                total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1))
            total_dir_targets = torch.cat(
                total_dir_targets, dim=-2).reshape(-1)
            total_dir_weights = torch.cat(
                total_dir_weights, dim=-2).reshape(-1)
            total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1)
            total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
        else:
            return self.anchor_target_single_assigner(
                self.bbox_assigner, anchors, gt_bboxes, gt_bboxes_ignore,
zhangwenwei's avatar
zhangwenwei committed
171
                gt_labels, input_meta, label_channels, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
172
173
174
175
176
177
178
179
180
181
182

    def anchor_target_single_assigner(self,
                                      bbox_assigner,
                                      anchors,
                                      gt_bboxes,
                                      gt_bboxes_ignore,
                                      gt_labels,
                                      input_meta,
                                      label_channels=1,
                                      num_classes=1,
                                      sampling=True):
wuyuefeng's avatar
wuyuefeng committed
183
184
185
186
        """Assign anchors and encode positive anchors.

        Args:
            bbox_assigner (BaseAssigner): assign positive and negative boxes.
liyinhao's avatar
liyinhao committed
187
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
188
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
189
190
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
191
192
193
194
195
196
197
198
            input_meta (dict): Meta info of each image.
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
            tuple: Anchor targets.
        """
zhangwenwei's avatar
zhangwenwei committed
199
200
201
202
203
204
205
206
207
        anchors = anchors.reshape(-1, anchors.size(-1))
        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long)
        dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float)
        labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
        if len(gt_bboxes) > 0:
208
209
            if not isinstance(gt_bboxes, torch.Tensor):
                gt_bboxes = gt_bboxes.tensor.to(anchors.device)
zhangwenwei's avatar
zhangwenwei committed
210
211
212
213
214
215
216
217
            assign_result = bbox_assigner.assign(anchors, gt_bboxes,
                                                 gt_bboxes_ignore, gt_labels)
            sampling_result = self.bbox_sampler.sample(assign_result, anchors,
                                                       gt_bboxes)
            pos_inds = sampling_result.pos_inds
            neg_inds = sampling_result.neg_inds
        else:
            pos_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
218
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0
zhangwenwei's avatar
zhangwenwei committed
219
220
            ).squeeze(-1).unique()
            neg_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
221
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) ==
zhangwenwei's avatar
zhangwenwei committed
222
223
224
225
226
                0).squeeze(-1).unique()

        if gt_labels is not None:
            labels += num_classes
        if len(pos_inds) > 0:
227
228
            pos_bbox_targets = self.bbox_coder.encode(
                sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
zhangwenwei's avatar
zhangwenwei committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            pos_dir_targets = get_direction_target(
                sampling_result.pos_bboxes,
                pos_bbox_targets,
                self.dir_offset,
                one_hot=False)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            dir_targets[pos_inds] = pos_dir_targets
            dir_weights[pos_inds] = 1.0

            if gt_labels is None:
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0
        return (labels, label_weights, bbox_targets, bbox_weights, dir_targets,
                dir_weights, pos_inds, neg_inds)


def get_direction_target(anchors,
                         reg_targets,
                         dir_offset=0,
                         num_bins=2,
                         one_hot=True):
wuyuefeng's avatar
wuyuefeng committed
260
261
262
    """Encode direction to 0 ~ num_bins-1.

    Args:
liyinhao's avatar
liyinhao committed
263
264
        anchors (torch.Tensor): Concatenated multi-level anchor.
        reg_targets (torch.Tensor): Bbox regression targets.
wuyuefeng's avatar
wuyuefeng committed
265
266
267
268
269
        dir_offset (int): Direction offset.
        num_bins (int): Number of bins to divide 2*PI.
        one_hot (bool): Whether to encode as one hot.

    Returns:
liyinhao's avatar
liyinhao committed
270
        torch.Tensor: Encoded direction targets.
wuyuefeng's avatar
wuyuefeng committed
271
    """
zhangwenwei's avatar
zhangwenwei committed
272
    rot_gt = reg_targets[..., 6] + anchors[..., 6]
zhangwenwei's avatar
zhangwenwei committed
273
    offset_rot = limit_period(rot_gt - dir_offset, 0, 2 * np.pi)
zhangwenwei's avatar
zhangwenwei committed
274
275
276
277
278
279
280
281
282
283
284
    dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
    dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
    if one_hot:
        dir_targets = torch.zeros(
            *list(dir_cls_targets.shape),
            num_bins,
            dtype=anchors.dtype,
            device=dir_cls_targets.device)
        dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
        dir_cls_targets = dir_targets
    return dir_cls_targets