hv_second_secfpn_6x8_80e_kitti-3d-car.py 5.67 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    type='VoxelNet',
    voxel_layer=dict(
        max_num_points=5,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
        max_voxels=(16000, 40000),  # (training, testing) max_coxels
    ),
    voxel_encoder=dict(
        type='VoxelFeatureExtractorV3',
        num_input_features=4,
        num_filters=[4],
        with_distance=False),
    middle_encoder=dict(
        type='SparseEncoder',
        in_channels=4,
        output_shape=[41, 1600, 1408],  # checked from PointCloud3D
        pre_act=False,
    ),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
        num_filters=[128, 256],
    ),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
        num_upsample_filters=[256, 256],
    ),
    bbox_head=dict(
        type='SECONDHead',
        class_name=['Car'],
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        encode_bg_as_zeros=True,
44
45
46
47
48
49
50
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
            strides=[2],
            sizes=[[1.6, 3.9, 1.56]],
            rotations=[0, 1.57],
            reshape_out=True),
zhangwenwei's avatar
zhangwenwei committed
51
        diff_rad_by_sin=True,
52
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
    ),
)
# model training and testing settings
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
zhangwenwei's avatar
zhangwenwei committed
68
        iou_calculator=dict(type='BboxOverlapsNearest3D'),
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        pos_iou_thr=0.6,
        neg_iou_thr=0.45,
        min_pos_iou=0.45,
        ignore_iof_thr=-1),
    allowed_border=0,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    use_rotate_nms=True,
    nms_across_levels=False,
    nms_thr=0.01,
    score_thr=0.3,
    min_bbox_size=0,
    post_center_limit_range=[0, -40, -3, 70.4, 40, 0.0],
)

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
input_modality = dict(
    use_lidar=True,
    use_depth=False,
    use_lidar_intensity=True,
    use_camera=False,
)
db_sampler = dict(
    root_path=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    use_road_plane=False,
    object_rot_range=[0.0, 0.0],
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5),
    ),
    sample_groups=dict(Car=15),
)
train_pipeline = [
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        loc_noise_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_uniform_noise=[-0.78539816, 0.78539816]),
117
    dict(type='RandomFlip3D', flip_ratio=0.5),
zhangwenwei's avatar
zhangwenwei committed
118
119
120
121
122
123
124
125
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.78539816, 0.78539816],
        scaling_uniform_noise=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
126
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
zhangwenwei's avatar
zhangwenwei committed
127
128
129
130
131
132
133
]
test_pipeline = [
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
zhangwenwei's avatar
zhangwenwei committed
134
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
zhangwenwei's avatar
zhangwenwei committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
]

data = dict(
    samples_per_gpu=4,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_train.pkl',
        split='training',
        training=True,
        pipeline=train_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    val=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    test=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='testing',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True))
# optimizer
lr = 0.001  # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
174
    target_ratio=(10, 1e-4),
zhangwenwei's avatar
zhangwenwei committed
175
176
177
178
179
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
180
    target_ratio=(0.85 / 0.95, 1),
zhangwenwei's avatar
zhangwenwei committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    cyclic_times=1,
    step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 80
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]