test_transforms_3d.py 5.27 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
import mmcv
import numpy as np
import torch

5
from mmdet3d.core import Box3DMode, CameraInstance3DBoxes, LiDARInstance3DBoxes
liyinhao's avatar
liyinhao committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from mmdet3d.datasets import ObjectNoise, ObjectSample


def test_remove_points_in_boxes():
    points = np.array([[68.1370, 3.3580, 2.5160, 0.0000],
                       [67.6970, 3.5500, 2.5010, 0.0000],
                       [67.6490, 3.7600, 2.5000, 0.0000],
                       [66.4140, 3.9010, 2.4590, 0.0000],
                       [66.0120, 4.0850, 2.4460, 0.0000],
                       [65.8340, 4.1780, 2.4400, 0.0000],
                       [65.8410, 4.3860, 2.4400, 0.0000],
                       [65.7450, 4.5870, 2.4380, 0.0000],
                       [65.5510, 4.7800, 2.4320, 0.0000],
                       [65.4860, 4.9820, 2.4300, 0.0000]])

    boxes = np.array(
        [[30.0285, 10.5110, -1.5304, 0.5100, 0.8700, 1.6000, 1.6400],
         [7.8369, 1.6053, -1.5605, 0.5800, 1.2300, 1.8200, -3.1000],
         [10.8740, -1.0827, -1.3310, 0.6000, 0.5200, 1.7100, 1.3500],
         [14.9783, 2.2466, -1.4950, 0.6100, 0.7300, 1.5300, -1.9200],
         [11.0656, 0.6195, -1.5202, 0.6600, 1.0100, 1.7600, -1.4600],
         [10.5994, -7.9049, -1.4980, 0.5300, 1.9600, 1.6800, 1.5600],
         [28.7068, -8.8244, -1.1485, 0.6500, 1.7900, 1.7500, 3.1200],
         [20.2630, 5.1947, -1.4799, 0.7300, 1.7600, 1.7300, 1.5100],
         [18.2496, 3.1887, -1.6109, 0.5600, 1.6800, 1.7100, 1.5600],
         [7.7396, -4.3245, -1.5801, 0.5600, 1.7900, 1.8000, -0.8300]])

    points = ObjectSample.remove_points_in_boxes(points, boxes)
    assert points.shape == (10, 4)


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def test_object_sample():
    import pickle
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    with open('./tests/data/kitti/kitti_dbinfos_train.pkl', 'rb') as f:
        db_infos = pickle.load(f)
    np.random.seed(0)
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    annos = info['annos']
    gt_names = annos['name']
    gt_bboxes_3d = db_infos['Pedestrian'][0]['box3d_lidar']
    gt_bboxes_3d = LiDARInstance3DBoxes([gt_bboxes_3d])
    CLASSES = ('Car', 'Pedestrian', 'Cyclist')
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    input_dict = dict(
        points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample sample_2d=False, ' \
                        'data_root=./tests/data/kitti/, ' \
                        'info_path=./tests/data/kitti/kitti' \
                        '_dbinfos_train.pkl, rate=1.0, ' \
                        'prepare={\'filter_by_difficulty\': [-1], ' \
                        '\'filter_by_min_points\': {\'Pedestrian\': 10}}, ' \
                        'classes=[\'Pedestrian\', \'Cyclist\', \'Car\'], ' \
                        'sample_groups={\'Pedestrian\': 6}'
    assert repr_str == expected_repr_str
    assert points.shape == (1177, 4)
    assert gt_bboxes_3d.tensor.shape == (2, 7)
    assert np.all(gt_labels_3d == [1, 0])


liyinhao's avatar
liyinhao committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def test_object_noise():
    np.random.seed(0)
    object_noise = ObjectNoise()
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = object_noise(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_gt_bboxes_3d = torch.tensor(
        [[9.1724, -1.7559, -1.3550, 0.4800, 1.2000, 1.8900, 0.0505]])
    repr_str = repr(object_noise)
    expected_repr_str = 'ObjectNoise(num_try=100, ' \
                        'translation_std=[0.25, 0.25, 0.25], ' \
                        'global_rot_range=[0.0, 0.0], ' \
                        'rot_range=[-0.15707963267, 0.15707963267])'

    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d, 1e-3)