test_lidar_box3d.py 11.8 KB
Newer Older
1
2
3
import numpy as np
import torch

zhangwenwei's avatar
zhangwenwei committed
4
from mmdet3d.core.bbox import Box3DMode, LiDARInstance3DBoxes
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130


def test_lidar_boxes3d():
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
    expected_tensor = torch.tensor(
        [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
         [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
         [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
         [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
         [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]])
    boxes.flip()
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box rotation
    expected_tensor = torch.tensor(
        [[1.0385344, -2.9020846, -1.7501148, 1.75, 3.39, 1.65, 1.9336663],
         [7.969653, -4.774011, -1.6357126, 1.54, 4.01, 1.57, 1.7936664],
         [27.405172, -7.0688415, -1.303325, 1.47, 2.23, 1.48, 4.9836664],
         [19.823532, -28.187025, -1.736057, 1.56, 3.48, 1.4, 5.1036663],
         [27.974297, -16.27845, -1.6217787, 1.74, 3.77, 1.48, 0.6236664]])
    boxes.rotate(0.27207362796436096)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
131
132
133
134
135
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
    expected_tesor = boxes.tensor.clone()
    assert torch.allclose(expected_tesor, boxes.tensor)

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
    assert torch.allclose(expected_tesor, boxes.tensor)

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    # the pytorch print loses some precision
    assert torch.allclose(
        boxes.nearset_bev, expected_tensor, rtol=1e-4, atol=1e-7)

    # obtained by the print of the original implementation
    expected_tensor = torch.tensor([[[2.4093e+00, -4.4784e+00, -1.9169e+00],
                                     [2.4093e+00, -4.4784e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -1.9169e+00]],
                                    [[9.8933e+00, -6.1340e+00, -1.8019e+00],
                                     [9.8933e+00, -6.1340e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -1.8019e+00]],
                                    [[2.8525e+01, -8.2534e+00, -1.4676e+00],
                                     [2.8525e+01, -8.2534e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, -1.4676e+00]],
                                    [[2.1337e+01, -2.9870e+01, -1.9028e+00],
                                     [2.1337e+01, -2.9870e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -1.9028e+00]],
                                    [[2.6398e+01, -1.7530e+01, -1.7879e+00],
                                     [2.6398e+01, -1.7530e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -1.7879e+00]]])
    # the pytorch print loses some precision
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)