test_lidar_box3d.py 7.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import torch

from mmdet3d.core.bbox import LiDARInstance3DBoxes


def test_lidar_boxes3d():
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
    expected_tensor = torch.tensor(
        [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
         [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
         [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
         [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
         [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]])
    boxes.flip()
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box rotation
    expected_tensor = torch.tensor(
        [[1.0385344, -2.9020846, -1.7501148, 1.75, 3.39, 1.65, 1.9336663],
         [7.969653, -4.774011, -1.6357126, 1.54, 4.01, 1.57, 1.7936664],
         [27.405172, -7.0688415, -1.303325, 1.47, 2.23, 1.48, 4.9836664],
         [19.823532, -28.187025, -1.736057, 1.56, 3.48, 1.4, 5.1036663],
         [27.974297, -16.27845, -1.6217787, 1.74, 3.77, 1.48, 0.6236664]])
    boxes.rotate(0.27207362796436096)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])