sunrgbd_dataset.py 1.96 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
import os.path as osp

import mmcv
import numpy as np

from mmdet.datasets import DATASETS
7
from .indoor_dataset import IndoorDataset
liyinhao's avatar
liyinhao committed
8
9
10


@DATASETS.register_module()
11
class SunrgbdDataset(IndoorDataset):
liyinhao's avatar
liyinhao committed
12

liyinhao's avatar
liyinhao committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    class2type = {
        0: 'bed',
        1: 'table',
        2: 'sofa',
        3: 'chair',
        4: 'toilet',
        5: 'desk',
        6: 'dresser',
        7: 'night_stand',
        8: 'bookshelf',
        9: 'bathtub'
    }
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
                 root_path,
                 ann_file,
                 pipeline=None,
                 training=False,
                 class_names=None,
                 test_mode=False,
                 with_label=True):
36
37
        super().__init__(root_path, ann_file, pipeline, training, class_names,
                         test_mode, with_label)
liyinhao's avatar
liyinhao committed
38
39
40
        self.data_path = osp.join(root_path, 'sunrgbd_trainval')

    def _get_pts_filename(self, sample_idx):
41
42
        pts_filename = osp.join(self.data_path, 'lidar',
                                f'{sample_idx:06d}.npy')
liyinhao's avatar
liyinhao committed
43
44
45
46
47
        mmcv.check_file_exist(pts_filename)
        return pts_filename

    def _get_ann_info(self, index, sample_idx):
        # Use index to get the annos, thus the evalhook could also use this api
48
        info = self.infos[index]
liyinhao's avatar
liyinhao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']  # k, 6
            gt_labels = info['annos']['class']
            gt_bboxes_3d_mask = np.ones_like(gt_labels).astype(np.bool)
        else:
            gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
            gt_labels = np.zeros(1, ).astype(np.bool)
            gt_bboxes_3d_mask = np.zeros(1, ).astype(np.bool)

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels=gt_labels,
            gt_bboxes_3d_mask=gt_bboxes_3d_mask)
        return anns_results