sunrgbd_dataset.py 5.89 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import copy
import os
import os.path as osp

import mmcv
import numpy as np
import torch.utils.data as torch_data

from mmdet.datasets import DATASETS
from .pipelines import Compose


@DATASETS.register_module()
class SunrgbdDataset(torch_data.Dataset):
liyinhao's avatar
liyinhao committed
15

liyinhao's avatar
liyinhao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    class2type = {
        0: 'bed',
        1: 'table',
        2: 'sofa',
        3: 'chair',
        4: 'toilet',
        5: 'desk',
        6: 'dresser',
        7: 'night_stand',
        8: 'bookshelf',
        9: 'bathtub'
    }
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
                 root_path,
                 ann_file,
                 pipeline=None,
                 training=False,
                 class_names=None,
                 test_mode=False,
                 with_label=True):
        super().__init__()
        self.root_path = root_path
        self.class_names = class_names if class_names else self.CLASSES

        self.data_path = osp.join(root_path, 'sunrgbd_trainval')
        self.test_mode = test_mode
        self.training = training
        self.mode = 'TRAIN' if self.training else 'TEST'

        mmcv.check_file_exist(ann_file)
        self.sunrgbd_infos = mmcv.load(ann_file)

        # dataset config
        self.num_class = len(self.class_names)
        self.pcd_limit_range = [0, -40, -3.0, 70.4, 40, 3.0]

        if pipeline is not None:
            self.pipeline = Compose(pipeline)
        self.with_label = with_label

    def __getitem__(self, idx):
        if self.test_mode:
            return self._prepare_test_data(idx)
        while True:
            data = self._prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _prepare_test_data(self, index):
        input_dict = self._get_sensor_data(index)
        example = self.pipeline(input_dict)
        return example

    def _prepare_train_data(self, index):
        input_dict = self._get_sensor_data(index)
        input_dict = self._train_pre_pipeline(input_dict)
        if input_dict is None:
            return None
        example = self.pipeline(input_dict)
        if len(example['gt_bboxes_3d']._data) == 0:
            return None
        return example

    def _train_pre_pipeline(self, input_dict):
        if len(input_dict['gt_bboxes_3d']) == 0:
            return None
        return input_dict

    def _get_sensor_data(self, index):
        info = self.sunrgbd_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = self._get_pts_filename(sample_idx)

        input_dict = dict(pts_filename=pts_filename)

        if self.with_label:
            annos = self._get_ann_info(index, sample_idx)
            input_dict.update(annos)

        return input_dict

    def _get_pts_filename(self, sample_idx):
        pts_filename = os.path.join(self.data_path, 'lidar',
                                    f'{sample_idx:06d}.npy')
        mmcv.check_file_exist(pts_filename)
        return pts_filename

    def _get_ann_info(self, index, sample_idx):
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.sunrgbd_infos[index]
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']  # k, 6
            gt_labels = info['annos']['class']
            gt_bboxes_3d_mask = np.ones_like(gt_labels).astype(np.bool)
        else:
            gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
            gt_labels = np.zeros(1, ).astype(np.bool)
            gt_bboxes_3d_mask = np.zeros(1, ).astype(np.bool)

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels=gt_labels,
            gt_bboxes_3d_mask=gt_bboxes_3d_mask)
        return anns_results

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def _generate_annotations(self, output):
liyinhao's avatar
liyinhao committed
131
132
133
134
135
136
137
        """Generate Annotations.

        Transform results of the model to the form of the evaluation.

        Args:
            output (List): The output of the model.
        """
liyinhao's avatar
liyinhao committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        result = []
        bs = len(output)
        for i in range(bs):
            pred_list_i = list()
            pred_boxes = output[i]
            box3d_depth = pred_boxes['box3d_lidar']
            if box3d_depth is not None:
                label_preds = pred_boxes['label_preds']
                scores = pred_boxes['scores'].detach().cpu().numpy()
                label_preds = label_preds.detach().cpu().numpy()
                num_proposal = box3d_depth.shape[0]
                for j in range(num_proposal):
                    bbox_lidar = box3d_depth[j]  # [7] in lidar
                    bbox_lidar_bottom = bbox_lidar.copy()
                    pred_list_i.append(
                        (label_preds[j], bbox_lidar_bottom, scores[j]))
                result.append(pred_list_i)
            else:
                result.append(pred_list_i)

        return result

liyinhao's avatar
liyinhao committed
160
    def format_results(self, outputs):
liyinhao's avatar
liyinhao committed
161
162
163
164
165
166
        results = []
        for output in outputs:
            result = self._generate_annotations(output)
            results.append(result)
        return results

liyinhao's avatar
liyinhao committed
167
168
169
170
171
172
173
174
175
176
    def evaluate(self, results, metric):
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
            results (List): List of result.
            metric (List[float]): AP IoU thresholds.
        """
        results = self.format_results(results)
liyinhao's avatar
liyinhao committed
177
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
178
        assert len(metric) > 0
liyinhao's avatar
liyinhao committed
179
180
181
182
183
184
185
186
187
        gt_annos = [
            copy.deepcopy(info['annos']) for info in self.sunrgbd_infos
        ]
        ap_result_str, ap_dict = indoor_eval(gt_annos, results, metric,
                                             self.class2type)
        return ap_dict

    def __len__(self):
        return len(self.sunrgbd_infos)