kitti_metric.py 25.9 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp
from typing import Dict, List, Optional, Sequence, Union

import mmcv
import numpy as np
import torch
from mmcv.utils import print_log
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger

from mmdet3d.core.bbox import Box3DMode, points_cam2img
from mmdet3d.core.evaluation import kitti_eval
from mmdet3d.registry import METRICS


@METRICS.register_module()
class KittiMetric(BaseMetric):
    """Kitti evaluation metric.

    Args:
        ann_file (str): Annotation file path.
        metric (str | list[str]): Metrics to be evaluated.
            Default to 'bbox'.
        pcd_limit_range (list): The range of point cloud used to
            filter invalid predicted boxes.
            Default to [0, -40, -3, 70.4, 40, 0.0].
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
        pklfile_prefix (str, optional): The prefix of pkl files, including
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Default: None.
        submission_prefix (str, optional): The prefix of submission data.
            If not specified, the submission data will not be generated.
            Default: None.
        collect_device (str): Device name used for collecting results
            from different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
    """

    def __init__(self,
                 ann_file: str,
                 metric: Union[str, List[str]] = 'bbox',
                 pcd_limit_range: List[float] = [0, -40, -3, 70.4, 40, 0.0],
                 prefix: Optional[str] = None,
                 pklfile_prefix: str = None,
                 submission_prefix: str = None,
                 collect_device: str = 'cpu'):
        self.default_prefix = 'Kitti metric'
        super(KittiMetric, self).__init__(
            collect_device=collect_device, prefix=prefix)
        self.pcd_limit_range = pcd_limit_range
        self.ann_file = ann_file
        self.pklfile_prefix = pklfile_prefix
        self.submission_prefix = submission_prefix

        allowed_metrics = ['bbox', 'img_bbox', 'mAP']
        self.metrics = metric if isinstance(metric, list) else [metric]
        for metric in self.metrics:
            if metric not in allowed_metrics:
                raise KeyError("metric should be one of 'bbox', 'img_bbox', "
                               'but got {metric}.')

VVsssssk's avatar
VVsssssk committed
67
68
69
70
71
72
73
74
    def convert_annos_to_kitti_annos(
        self,
        data_annos: list,
        classes: list = [
            'Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck', 'Person_sitting',
            'Tram', 'Misc'
        ]
    ) -> list:
VVsssssk's avatar
VVsssssk committed
75
76
77
78
        """Convert loading annotations to Kitti annotations.

        Args:
            data_annos (list[dict]): Annotations loaded from ann_file.
VVsssssk's avatar
VVsssssk committed
79
80
81
            classes (list[str]): Classes used in the dataset. Default used
                ['Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
                'Person_sitting', 'Tram', 'Misc'].
VVsssssk's avatar
VVsssssk committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        Returns:
            List[dict]: List of Kitti annotations.
        """
        assert 'instances' in data_annos[0]
        for i, annos in enumerate(data_annos):
            if len(annos['instances']) == 0:
                kitti_annos = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }
            else:
                kitti_annos = {
                    'name': [],
                    'truncated': [],
                    'occluded': [],
                    'alpha': [],
                    'bbox': [],
                    'location': [],
                    'dimensions': [],
                    'rotation_y': [],
                    'score': []
                }
                for instance in annos['instances']:
VVsssssk's avatar
VVsssssk committed
113
114
115
116
                    labels = instance['bbox_label']
                    if labels == -1:
                        continue
                    kitti_annos['name'].append(classes[labels])
VVsssssk's avatar
VVsssssk committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                    kitti_annos['truncated'].append(instance['truncated'])
                    kitti_annos['occluded'].append(instance['occluded'])
                    kitti_annos['alpha'].append(instance['alpha'])
                    kitti_annos['bbox'].append(instance['bbox'])
                    kitti_annos['location'].append(instance['bbox_3d'][:3])
                    kitti_annos['dimensions'].append(instance['bbox_3d'][3:6])
                    kitti_annos['rotation_y'].append(instance['bbox_3d'][6])
                    kitti_annos['score'].append(instance['score'])
                for name in kitti_annos:
                    kitti_annos[name] = np.array(kitti_annos[name])
            data_annos[i]['kitti_annos'] = kitti_annos
        return data_annos

    def load_annotations(self, ann_file: str) -> list:
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
        # loading data from a file-like object needs file format
        return mmcv.load(ann_file, file_format='pkl')

    def process(self, data_batch: Sequence[dict],
                predictions: Sequence[dict]) -> None:
        """Process one batch of data samples and predictions.

        The processed results should be stored in ``self.results``,
        which will be used to compute the metrics when all batches
        have been processed.

        Args:
            data_batch (Sequence[dict]): A batch of data
                from the dataloader.
            predictions (Sequence[dict]): A batch of outputs from
                the model.
        """
        assert len(data_batch) == len(predictions)
        for data, pred in zip(data_batch, predictions):
            result = dict()
            for pred_result in pred:
                for attr_name in pred[pred_result]:
                    pred[pred_result][attr_name] = pred[pred_result][
VVsssssk's avatar
VVsssssk committed
162
                        attr_name].to('cpu')
VVsssssk's avatar
VVsssssk committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                result[pred_result] = pred[pred_result]
                sample_idx = data['data_sample']['sample_idx']
                result['sample_idx'] = sample_idx
        self.results.append(result)

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()
        self.classes = self.dataset_meta['CLASSES']

        # load annotations
        pkl_annos = self.load_annotations(self.ann_file)['data_list']
VVsssssk's avatar
VVsssssk committed
183
        self.data_infos = self.convert_annos_to_kitti_annos(pkl_annos)
VVsssssk's avatar
VVsssssk committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        result_dict, tmp_dir = self.format_results(
            results,
            pklfile_prefix=self.pklfile_prefix,
            submission_prefix=self.submission_prefix,
            classes=self.classes)

        gt_annos = [
            self.data_infos[result['sample_idx']]['kitti_annos']
            for result in results
        ]

        metric_dict = {}
        for metric in self.metrics:
            ap_dict = self.kitti_evaluate(
                result_dict,
                gt_annos,
                metric=metric,
                logger=logger,
                classes=self.classes)
            for result in ap_dict:
                metric_dict[result] = ap_dict[result]

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return metric_dict

    def kitti_evaluate(self,
VVsssssk's avatar
VVsssssk committed
211
                       results_dict: List[dict],
VVsssssk's avatar
VVsssssk committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                       gt_annos: List[dict],
                       metric: str = None,
                       classes: List[str] = None,
                       logger: MMLogger = None) -> dict:
        """Evaluation in KITTI protocol.

        Args:
            results_dict (dict): Formatted results of the dataset.
            gt_annos (list[dict]): Contain gt information of each sample.
            metric (str, optional): Metrics to be evaluated.
                Default: None.
            logger (MMLogger, optional): Logger used for printing
                related information during evaluation. Default: None.
            classes (list[String], optional): A list of class name. Defaults
                to None.

        Returns:
            dict[str, float]: Results of each evaluation metric.
        """
        ap_dict = dict()
VVsssssk's avatar
VVsssssk committed
232
        for name in results_dict:
VVsssssk's avatar
VVsssssk committed
233
234
235
236
237
            if name == 'pred_instances' or metric == 'img_bbox':
                eval_types = ['bbox']
            else:
                eval_types = ['bbox', 'bev', '3d']
            ap_result_str, ap_dict_ = kitti_eval(
VVsssssk's avatar
VVsssssk committed
238
                gt_annos, results_dict[name], classes, eval_types=eval_types)
VVsssssk's avatar
VVsssssk committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            for ap_type, ap in ap_dict_.items():
                ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

            print_log(f'Results of {name}:\n' + ap_result_str, logger=logger)

        return ap_dict

    def format_results(self,
                       results: List[dict],
                       pklfile_prefix: str = None,
                       submission_prefix: str = None,
                       classes: List[str] = None):
        """Format the results to pkl file.

        Args:
            results (list[dict]): Testing results of the
                dataset.
            pklfile_prefix (str, optional): The prefix of pkl files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            submission_prefix (str, optional): The prefix of submitted files.
                It includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            classes (list[String], optional): A list of class name. Defaults
                to None.

        Returns:
            tuple: (result_dict, tmp_dir), result_dict is a dict containing
                the formatted result, tmp_dir is the temporal directory created
                for saving json files when jsonfile_prefix is not specified.
        """
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        result_dict = dict()
        sample_id_list = [result['sample_idx'] for result in results]
        for name in results[0]:
            if submission_prefix is not None:
                submission_prefix_ = osp.join(submission_prefix, name)
            else:
                submission_prefix_ = None
            if pklfile_prefix is not None:
                pklfile_prefix_ = osp.join(pklfile_prefix, name) + '.pkl'
            else:
                pklfile_prefix_ = None
            if 'pred_instances' in name and '3d' in name and name[0] != '_':
                net_outputs = [result[name] for result in results]
                result_list_ = self.bbox2result_kitti(net_outputs,
                                                      sample_id_list, classes,
                                                      pklfile_prefix_,
                                                      submission_prefix_)
                result_dict[name] = result_list_
            elif name == 'pred_instances' and name[0] != '_':
                net_outputs = [info[name] for info in results]
                result_list_ = self.bbox2result_kitti2d(
                    net_outputs, sample_id_list, classes, pklfile_prefix_,
                    submission_prefix_)
                result_dict[name] = result_list_
        return result_dict, tmp_dir

    def bbox2result_kitti(self,
                          net_outputs: list,
                          sample_id_list: list,
                          class_names: list,
                          pklfile_prefix: str = None,
                          submission_prefix: str = None):
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[dict]): List of array storing the
                inferenced bounding boxes and scores.
            sample_id_list (list[int]): List of input sample id.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)

        det_annos = []
        print('\nConverting prediction to KITTI format')
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            sample_idx = sample_id_list[idx]
            info = self.data_infos[sample_idx]
            # Here default used 'CAM2' to compute metric. If you want to
            # use another camera, please modify it.
            image_shape = (info['images']['CAM2']['height'],
                           info['images']['CAM2']['width'])
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
                anno = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

            annos[-1]['sample_id'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)

            det_annos += annos

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
            mmcv.dump(det_annos, out)
            print(f'Result is saved to {out}.')

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs: list,
                            sample_id_list,
                            class_names: list,
                            pklfile_prefix: str = None,
                            submission_prefix: str = None):
        """Convert 2D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[dict]): List of array storing the
                inferenced bounding boxes and scores.
            sample_id_list (list[int]): List of input sample id.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
            list[dict]: A list of dictionaries have the kitti format
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        det_annos = []
        print('\nConverting prediction to KITTI format')
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
            sample_idx = sample_id_list[i]

            num_example = 0
            bbox = bboxes_per_sample['bboxes']
            for i in range(bbox.shape[0]):
                anno['name'].append(class_names[int(
                    bboxes_per_sample['labels'][i])])
                anno['truncated'].append(0.0)
                anno['occluded'].append(0)
                anno['alpha'].append(0.0)
                anno['bbox'].append(bbox[i, :4])
                # set dimensions (height, width, length) to zero
                anno['dimensions'].append(
                    np.zeros(shape=[3], dtype=np.float32))
                # set the 3D translation to (-1000, -1000, -1000)
                anno['location'].append(
                    np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                anno['rotation_y'].append(0.0)
                anno['score'].append(bboxes_per_sample['scores'][i])
                num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_id'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
            mmcv.dump(det_annos, out)
            print(f'Result is saved to {out}.')

        if submission_prefix is not None:
            # save file in submission format
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
            for i, anno in enumerate(det_annos):
                sample_idx = self.data_infos[i]['image']['image_idx']
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
            print(f'Result is saved to {submission_prefix}')

        return det_annos

    def convert_valid_bboxes(self, box_dict: dict, info: dict):
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in
                    camera coordinate.
                - box3d_lidar (np.ndarray): 3D bounding boxes in
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
        # TODO: refactor this function
        box_preds = box_dict['bboxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
        sample_idx = info['sample_id']
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)

        if len(box_preds) == 0:
            return dict(
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
        # Here default used 'CAM2' to compute metric. If you want to
        # use another camera, please modify it.
        lidar2cam = np.array(info['images']['CAM2']['lidar2cam']).astype(
            np.float32)
        P2 = np.array(info['images']['CAM2']['cam2img']).astype(np.float32)
        img_shape = (info['images']['CAM2']['height'],
                     info['images']['CAM2']['width'])
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, lidar2cam)

        box_corners = box_preds_camera.corners
        box_corners_in_image = points_cam2img(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
                sample_idx=sample_idx)
        else:
            return dict(
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)