test_transforms_3d.py 10.1 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
import mmcv
import numpy as np
3
import pytest
liyinhao's avatar
liyinhao committed
4
5
import torch

6
from mmdet3d.core import Box3DMode, CameraInstance3DBoxes, LiDARInstance3DBoxes
7
8
from mmdet3d.datasets import (BackgroundPointsFilter, ObjectNoise,
                              ObjectSample, RandomFlip3D)
liyinhao's avatar
liyinhao committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


def test_remove_points_in_boxes():
    points = np.array([[68.1370, 3.3580, 2.5160, 0.0000],
                       [67.6970, 3.5500, 2.5010, 0.0000],
                       [67.6490, 3.7600, 2.5000, 0.0000],
                       [66.4140, 3.9010, 2.4590, 0.0000],
                       [66.0120, 4.0850, 2.4460, 0.0000],
                       [65.8340, 4.1780, 2.4400, 0.0000],
                       [65.8410, 4.3860, 2.4400, 0.0000],
                       [65.7450, 4.5870, 2.4380, 0.0000],
                       [65.5510, 4.7800, 2.4320, 0.0000],
                       [65.4860, 4.9820, 2.4300, 0.0000]])

    boxes = np.array(
        [[30.0285, 10.5110, -1.5304, 0.5100, 0.8700, 1.6000, 1.6400],
         [7.8369, 1.6053, -1.5605, 0.5800, 1.2300, 1.8200, -3.1000],
         [10.8740, -1.0827, -1.3310, 0.6000, 0.5200, 1.7100, 1.3500],
         [14.9783, 2.2466, -1.4950, 0.6100, 0.7300, 1.5300, -1.9200],
         [11.0656, 0.6195, -1.5202, 0.6600, 1.0100, 1.7600, -1.4600],
         [10.5994, -7.9049, -1.4980, 0.5300, 1.9600, 1.6800, 1.5600],
         [28.7068, -8.8244, -1.1485, 0.6500, 1.7900, 1.7500, 3.1200],
         [20.2630, 5.1947, -1.4799, 0.7300, 1.7600, 1.7300, 1.5100],
         [18.2496, 3.1887, -1.6109, 0.5600, 1.6800, 1.7100, 1.5600],
         [7.7396, -4.3245, -1.5801, 0.5600, 1.7900, 1.8000, -0.8300]])

    points = ObjectSample.remove_points_in_boxes(points, boxes)
    assert points.shape == (10, 4)


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def test_object_sample():
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    np.random.seed(0)
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
yinchimaoliang's avatar
yinchimaoliang committed
62
63
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
64
    annos = info['annos']
yinchimaoliang's avatar
yinchimaoliang committed
65
66
67
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
68
    gt_names = annos['name']
yinchimaoliang's avatar
yinchimaoliang committed
69
70
71
72
73
74

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('Pedestrian', 'Cyclist', 'Car')
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    input_dict = dict(
        points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample sample_2d=False, ' \
                        'data_root=./tests/data/kitti/, ' \
                        'info_path=./tests/data/kitti/kitti' \
                        '_dbinfos_train.pkl, rate=1.0, ' \
                        'prepare={\'filter_by_difficulty\': [-1], ' \
                        '\'filter_by_min_points\': {\'Pedestrian\': 10}}, ' \
                        'classes=[\'Pedestrian\', \'Cyclist\', \'Car\'], ' \
                        'sample_groups={\'Pedestrian\': 6}'
    assert repr_str == expected_repr_str
yinchimaoliang's avatar
yinchimaoliang committed
97
98
99
    assert points.shape == (800, 4)
    assert gt_bboxes_3d.tensor.shape == (1, 7)
    assert np.all(gt_labels_3d == [0])
100
101


liyinhao's avatar
liyinhao committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def test_object_noise():
    np.random.seed(0)
    object_noise = ObjectNoise()
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = object_noise(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_gt_bboxes_3d = torch.tensor(
        [[9.1724, -1.7559, -1.3550, 0.4800, 1.2000, 1.8900, 0.0505]])
    repr_str = repr(object_noise)
    expected_repr_str = 'ObjectNoise(num_try=100, ' \
                        'translation_std=[0.25, 0.25, 0.25], ' \
                        'global_rot_range=[0.0, 0.0], ' \
                        'rot_range=[-0.15707963267, 0.15707963267])'

    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d, 1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190


def test_random_flip_3d():
    random_flip_3d = RandomFlip3D(
        flip_ratio_bev_horizontal=1.0, flip_ratio_bev_vertical=1.0)
    points = np.array([[22.7035, 9.3901, -0.2848, 0.0000],
                       [21.9826, 9.1766, -0.2698, 0.0000],
                       [21.4329, 9.0209, -0.2578, 0.0000],
                       [21.3068, 9.0205, -0.2558, 0.0000],
                       [21.3400, 9.1305, -0.2578, 0.0000],
                       [21.3291, 9.2099, -0.2588, 0.0000],
                       [21.2759, 9.2599, -0.2578, 0.0000],
                       [21.2686, 9.2982, -0.2588, 0.0000],
                       [21.2334, 9.3607, -0.2588, 0.0000],
                       [21.2179, 9.4372, -0.2598, 0.0000]])
    bbox3d_fields = ['gt_bboxes_3d']
    img_fields = []
    box_type_3d = LiDARInstance3DBoxes
    gt_bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[38.9229, 18.4417, -1.1459, 0.7100, 1.7600, 1.8600, -2.2652],
             [12.7768, 0.5795, -2.2682, 0.5700, 0.9900, 1.7200, -2.5029],
             [12.7557, 2.2996, -1.4869, 0.6100, 1.1100, 1.9000, -1.9390],
             [10.6677, 0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 1.0856],
             [5.0903, 5.1004, -1.2694, 0.7100, 1.7000, 1.8300, -1.9136]]))
    input_dict = dict(
        points=points,
        bbox3d_fields=bbox3d_fields,
        box_type_3d=box_type_3d,
        img_fields=img_fields,
        gt_bboxes_3d=gt_bboxes_3d)
    input_dict = random_flip_3d(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_points = np.array([[22.7035, -9.3901, -0.2848, 0.0000],
                                [21.9826, -9.1766, -0.2698, 0.0000],
                                [21.4329, -9.0209, -0.2578, 0.0000],
                                [21.3068, -9.0205, -0.2558, 0.0000],
                                [21.3400, -9.1305, -0.2578, 0.0000],
                                [21.3291, -9.2099, -0.2588, 0.0000],
                                [21.2759, -9.2599, -0.2578, 0.0000],
                                [21.2686, -9.2982, -0.2588, 0.0000],
                                [21.2334, -9.3607, -0.2588, 0.0000],
                                [21.2179, -9.4372, -0.2598, 0.0000]])
    expected_gt_bboxes_3d = torch.tensor(
        [[38.9229, -18.4417, -1.1459, 0.7100, 1.7600, 1.8600, 5.4068],
         [12.7768, -0.5795, -2.2682, 0.5700, 0.9900, 1.7200, 5.6445],
         [12.7557, -2.2996, -1.4869, 0.6100, 1.1100, 1.9000, 5.0806],
         [10.6677, -0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 2.0560],
         [5.0903, -5.1004, -1.2694, 0.7100, 1.7000, 1.8300, 5.0552]])
    repr_str = repr(random_flip_3d)
    expected_repr_str = 'RandomFlip3D(sync_2d=True,' \
                        'flip_ratio_bev_vertical=1.0)'
    assert np.allclose(points, expected_points)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
    assert repr_str == expected_repr_str
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232


def test_background_points_filter():
    np.random.seed(0)
    background_points_filter = BackgroundPointsFilter((0.5, 2.0, 0.5))
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    orig_points = points.copy()
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    extra_points = gt_bboxes_3d.corners.reshape(8, 3)[[1, 2, 5, 6], :]
    extra_points[:, 2] += 0.1
    extra_points = torch.cat([extra_points, extra_points.new_zeros(4, 1)], 1)
    points = np.concatenate([points, extra_points.numpy()], 0)
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = background_points_filter(input_dict)

    points = input_dict['points']
    repr_str = repr(background_points_filter)
    expected_repr_str = 'BackgroundPointsFilter(bbox_enlarge_range=' \
                        '[[0.5, 2.0, 0.5]])'
    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert np.allclose(orig_points, points)

    # test single float config
    BackgroundPointsFilter(0.5)

    # The length of bbox_enlarge_range should be 3
    with pytest.raises(AssertionError):
        BackgroundPointsFilter((0.5, 2.0))