test_apis.py 12.5 KB
Newer Older
1
2
import numpy as np
import os
yinchimaoliang's avatar
yinchimaoliang committed
3
import pytest
4
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
5
6
7
8
import torch
from mmcv.parallel import MMDataParallel
from os.path import dirname, exists, join

9
10
11
12
from mmdet3d.apis import (convert_SyncBN, inference_detector,
                          inference_multi_modality_detector,
                          inference_segmentor, init_model, show_result_meshlab,
                          single_gpu_test)
13
from mmdet3d.core import Box3DMode
14
from mmdet3d.core.bbox import DepthInstance3DBoxes, LiDARInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
15
from mmdet3d.datasets import build_dataloader, build_dataset
16
from mmdet3d.models import build_model
yinchimaoliang's avatar
yinchimaoliang committed
17
18
19
20
21


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
22
23
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
yinchimaoliang's avatar
yinchimaoliang committed
24
25
    except NameError:
        # For IPython development when this __file__ is not defined
26
27
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
yinchimaoliang's avatar
yinchimaoliang committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def test_convert_SyncBN():
    cfg = _get_config_module(
        'pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py')
    model_cfg = cfg.model
    convert_SyncBN(model_cfg)
    assert model_cfg['pts_voxel_encoder']['norm_cfg']['type'] == 'BN1d'
    assert model_cfg['pts_backbone']['norm_cfg']['type'] == 'BN2d'
    assert model_cfg['pts_neck']['norm_cfg']['type'] == 'BN2d'


def test_show_result_meshlab():
    pcd = 'tests/data/nuscenes/samples/LIDAR_TOP/n015-2018-08-02-17-16-37+' \
              '0800__LIDAR_TOP__1533201470948018.pcd.bin'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.5])
    points = np.random.rand(100, 4)
    img_meta = dict(
        pts_filename=pcd, boxes_3d=box_3d, box_mode_3d=Box3DMode.LIDAR)
    data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
70
71
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
72
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir)
73
74
75
76
77
78
79
80
81
82
83
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    tmp_dir.cleanup()

    # test multi-modality show
84
    # indoor scene
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    pcd = 'tests/data/sunrgbd/points/000001.bin'
    filename = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg'
    box_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[-1.1580, 3.3041, -0.9961, 0.3829, 0.4647, 0.5574, 1.1213]]))
    img = np.random.randn(1, 3, 608, 832)
    K = np.array([[[529.5000, 0.0000, 365.0000], [0.0000, 529.5000, 265.0000],
                   [0.0000, 0.0000, 1.0000]]])
    Rt = torch.tensor([[[0.9980, 0.0058, -0.0634], [0.0058, 0.9835, 0.1808],
                        [0.0634, -0.1808, 0.9815]]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.DEPTH,
        box_type_3d=DepthInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        transformation_3d_flow=['R', 'S', 'T'])
    calib = dict(K=K, Rt=Rt)
    data = dict(
        points=[[torch.tensor(points)]],
        img_metas=[[img_meta]],
        img=[img],
        calib=[calib])
111
    result = [dict(boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d)]
112
113
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
114
115
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, 0.3, task='multi_modality-det')
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
    # outdoor scene
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    filename = 'tests/data/kitti/training/image_2/000000.png'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[6.4495, -3.9097, -1.7409, 1.5063, 3.1819, 1.4716, 1.8782]]))
    img = np.random.randn(1, 3, 384, 1280)
    lidar2img = np.array(
        [[6.09695435e+02, -7.21421631e+02, -1.25125790e+00, -1.23041824e+02],
         [1.80384201e+02, 7.64479828e+00, -7.19651550e+02, -1.01016693e+02],
         [9.99945343e-01, 1.24365499e-04, 1.04513029e-02, -2.69386917e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.LIDAR,
        box_type_3d=LiDARInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        lidar2img=lidar2img)
    data = dict(
        points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
162
163
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, 0.1, task='multi_modality-det')
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    # test seg show
    pcd = 'tests/data/scannet/points/scene0000_00.bin'
    points = np.random.rand(100, 6)
    img_meta = dict(pts_filename=pcd)
    data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]])
    pred_seg = torch.randint(0, 20, (100, ))
    result = [dict(semantic_mask=pred_seg)]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, task='seg')
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    tmp_dir.cleanup()

205

yinchimaoliang's avatar
yinchimaoliang committed
206
207
208
209
def test_inference_detector():
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    detector_cfg = 'configs/pointpillars/hv_pointpillars_secfpn_' \
                   '6x8_160e_kitti-3d-3class.py'
210
    detector = init_model(detector_cfg, device='cpu')
yinchimaoliang's avatar
yinchimaoliang committed
211
    results = inference_detector(detector, pcd)
212
213
214
    bboxes_3d = results[0][0]['boxes_3d']
    scores_3d = results[0][0]['scores_3d']
    labels_3d = results[0][0]['labels_3d']
yinchimaoliang's avatar
yinchimaoliang committed
215
216
217
218
219
220
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def test_inference_multi_modality_detector():
    # these two multi-modality models both only have GPU implementations
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    # indoor scene
    pcd = 'tests/data/sunrgbd/points/000001.bin'
    img = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg'
    ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl'
    detector_cfg = 'configs/imvotenet/imvotenet_stage2_'\
                   '16x8_sunrgbd-3d-10class.py'
    detector = init_model(detector_cfg, device='cuda:0')
    results = inference_multi_modality_detector(detector, pcd, img, ann_file)
    bboxes_3d = results[0][0]['boxes_3d']
    scores_3d = results[0][0]['scores_3d']
    labels_3d = results[0][0]['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0

    # outdoor scene
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    img = 'tests/data/kitti/training/image_2/000000.png'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    detector_cfg = 'configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_' \
                   '2x8_80e_kitti-3d-3class.py'
    detector = init_model(detector_cfg, device='cuda:0')
    results = inference_multi_modality_detector(detector, pcd, img, ann_file)
    bboxes_3d = results[0][0]['pts_bbox']['boxes_3d']
    scores_3d = results[0][0]['pts_bbox']['scores_3d']
    labels_3d = results[0][0]['pts_bbox']['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_inference_segmentor():
    # PN2 only has GPU implementations
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    pcd = 'tests/data/scannet/points/scene0000_00.bin'
    segmentor_cfg = 'configs/pointnet2/pointnet2_ssg_' \
                    '16x2_scannet-3d-20class.py'
    segmentor = init_model(segmentor_cfg, device='cuda:0')
    results = inference_segmentor(segmentor, pcd)
    seg_3d = results[0][0]['semantic_mask']
    assert seg_3d.shape == torch.Size([100])
    assert seg_3d.min() >= 0
    assert seg_3d.max() <= 19


yinchimaoliang's avatar
yinchimaoliang committed
273
274
275
276
def test_single_gpu_test():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    cfg = _get_config_module('votenet/votenet_16x8_sunrgbd-3d-10class.py')
277
    cfg.model.train_cfg = None
278
    model = build_model(cfg.model, test_cfg=cfg.get('test_cfg'))
yinchimaoliang's avatar
yinchimaoliang committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    dataset_cfg = cfg.data.test
    dataset_cfg.data_root = './tests/data/sunrgbd'
    dataset_cfg.ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl'
    dataset = build_dataset(dataset_cfg)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)
    model = MMDataParallel(model, device_ids=[0])
    results = single_gpu_test(model, data_loader)
    bboxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0