train_mixins.py 10.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch

zhangwenwei's avatar
zhangwenwei committed
4
5
from mmdet3d.core import box_torch_ops, multi_apply
from mmdet.core import images_to_levels
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22


class AnchorTrainMixin(object):

    def anchor_target_3d(self,
                         anchor_list,
                         gt_bboxes_list,
                         input_metas,
                         gt_bboxes_ignore_list=None,
                         gt_labels_list=None,
                         label_channels=1,
                         num_classes=1,
                         sampling=True):
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
wuyuefeng's avatar
wuyuefeng committed
23
24
            gt_bboxes_list (list[BaseInstance3DBoxes]): Ground truth
                bboxes of each image.
zhangwenwei's avatar
zhangwenwei committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            img_metas (list[dict]): Meta info of each image.

        Returns:
            tuple
        """
        num_imgs = len(input_metas)
        assert len(anchor_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [
            anchors.view(-1, self.box_code_size).size(0)
            for anchors in anchor_list[0]
        ]
        # concat all level anchors and flags to a single tensor
        for i in range(num_imgs):
            anchor_list[i] = torch.cat(anchor_list[i])

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]

        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         all_dir_targets, all_dir_weights, pos_inds_list,
         neg_inds_list) = multi_apply(
             self.anchor_target_3d_single,
             anchor_list,
             gt_bboxes_list,
             gt_bboxes_ignore_list,
             gt_labels_list,
             input_metas,
             label_channels=label_channels,
             num_classes=num_classes,
             sampling=sampling)

        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors)
        dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors)
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, dir_targets_list, dir_weights_list,
                num_total_pos, num_total_neg)

    def anchor_target_3d_single(self,
                                anchors,
                                gt_bboxes,
                                gt_bboxes_ignore,
                                gt_labels,
                                input_meta,
                                label_channels=1,
                                num_classes=1,
                                sampling=True):
        if isinstance(self.bbox_assigner, list):
            feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2)
            rot_angles = anchors.size(-2)
            assert len(self.bbox_assigner) == anchors.size(-3)
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[..., i, :, :].reshape(
                    -1, self.box_code_size)
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
zhangwenwei's avatar
zhangwenwei committed
107
                        label_channels, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
108
109
110
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
zhangwenwei's avatar
zhangwenwei committed
111
112
                        gt_labels, input_meta, label_channels, num_classes,
                        sampling)
zhangwenwei's avatar
zhangwenwei committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels.reshape(feat_size, 1, rot_angles))
                total_label_weights.append(
                    label_weights.reshape(feat_size, 1, rot_angles))
                total_bbox_targets.append(
                    bbox_targets.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_dir_targets.append(
                    dir_targets.reshape(feat_size, 1, rot_angles))
                total_dir_weights.append(
                    dir_weights.reshape(feat_size, 1, rot_angles))
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=-2).reshape(-1)
            total_label_weights = torch.cat(
                total_label_weights, dim=-2).reshape(-1)
            total_bbox_targets = torch.cat(
                total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1))
            total_bbox_weights = torch.cat(
                total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1))
            total_dir_targets = torch.cat(
                total_dir_targets, dim=-2).reshape(-1)
            total_dir_weights = torch.cat(
                total_dir_weights, dim=-2).reshape(-1)
            total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1)
            total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
        else:
            return self.anchor_target_single_assigner(
                self.bbox_assigner, anchors, gt_bboxes, gt_bboxes_ignore,
zhangwenwei's avatar
zhangwenwei committed
151
                gt_labels, input_meta, label_channels, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    def anchor_target_single_assigner(self,
                                      bbox_assigner,
                                      anchors,
                                      gt_bboxes,
                                      gt_bboxes_ignore,
                                      gt_labels,
                                      input_meta,
                                      label_channels=1,
                                      num_classes=1,
                                      sampling=True):
        anchors = anchors.reshape(-1, anchors.size(-1))
        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long)
        dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float)
        labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
        if len(gt_bboxes) > 0:
172
173
            if not isinstance(gt_bboxes, torch.Tensor):
                gt_bboxes = gt_bboxes.tensor.to(anchors.device)
zhangwenwei's avatar
zhangwenwei committed
174
175
176
177
178
179
180
181
            assign_result = bbox_assigner.assign(anchors, gt_bboxes,
                                                 gt_bboxes_ignore, gt_labels)
            sampling_result = self.bbox_sampler.sample(assign_result, anchors,
                                                       gt_bboxes)
            pos_inds = sampling_result.pos_inds
            neg_inds = sampling_result.neg_inds
        else:
            pos_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
182
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0
zhangwenwei's avatar
zhangwenwei committed
183
184
            ).squeeze(-1).unique()
            neg_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
185
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) ==
zhangwenwei's avatar
zhangwenwei committed
186
187
188
189
190
                0).squeeze(-1).unique()

        if gt_labels is not None:
            labels += num_classes
        if len(pos_inds) > 0:
191
192
            pos_bbox_targets = self.bbox_coder.encode(
                sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
zhangwenwei's avatar
zhangwenwei committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            pos_dir_targets = get_direction_target(
                sampling_result.pos_bboxes,
                pos_bbox_targets,
                self.dir_offset,
                one_hot=False)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            dir_targets[pos_inds] = pos_dir_targets
            dir_weights[pos_inds] = 1.0

            if gt_labels is None:
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0
        return (labels, label_weights, bbox_targets, bbox_weights, dir_targets,
                dir_weights, pos_inds, neg_inds)


def get_direction_target(anchors,
                         reg_targets,
                         dir_offset=0,
                         num_bins=2,
                         one_hot=True):
    rot_gt = reg_targets[..., 6] + anchors[..., 6]
    offset_rot = box_torch_ops.limit_period(rot_gt - dir_offset, 0, 2 * np.pi)
    dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
    dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
    if one_hot:
        dir_targets = torch.zeros(
            *list(dir_cls_targets.shape),
            num_bins,
            dtype=anchors.dtype,
            device=dir_cls_targets.device)
        dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
        dir_cls_targets = dir_targets
    return dir_cls_targets