"vscode:/vscode.git/clone" did not exist on "d8f53cee0060ca23c3f82544f13db96789e425c7"
utils.py 5.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import mmcv
3
from mmcv.transforms import LoadImageFromFile
4

5
# yapf: disable
jshilong's avatar
jshilong committed
6
from mmdet3d.datasets.pipelines import (LoadAnnotations3D,
7
                                        LoadImageFromFileMono3D,
8
9
                                        LoadMultiViewImageFromFiles,
                                        LoadPointsFromFile,
10
                                        LoadPointsFromMultiSweeps,
jshilong's avatar
jshilong committed
11
                                        MultiScaleFlipAug3D, Pack3DDetInputs,
12
                                        PointSegClassMapping)
13
# yapf: enable
14
15
from mmdet3d.registry import TRANSFORMS
from mmdet.datasets.pipelines import MultiScaleFlipAug
16
17


18
19
20
def is_loading_function(transform):
    """Judge whether a transform function is a loading function.

21
22
23
    Note: `MultiScaleFlipAug3D` is a wrapper for multiple pipeline functions,
    so we need to search if its inner transforms contain any loading function.

24
25
26
27
    Args:
        transform (dict | :obj:`Pipeline`): A transform config or a function.

    Returns:
28
        bool: Whether it is a loading function. None means can't judge.
29
30
31
32
33
            When transform is `MultiScaleFlipAug3D`, we return None.
    """
    # TODO: use more elegant way to distinguish loading modules
    loading_functions = (LoadImageFromFile, LoadPointsFromFile,
                         LoadAnnotations3D, LoadMultiViewImageFromFiles,
jshilong's avatar
jshilong committed
34
35
                         LoadPointsFromMultiSweeps, Pack3DDetInputs,
                         LoadImageFromFileMono3D, PointSegClassMapping)
36
    if isinstance(transform, dict):
37
        obj_cls = TRANSFORMS.get(transform['type'])
38
39
40
41
        if obj_cls is None:
            return False
        if obj_cls in loading_functions:
            return True
42
        if obj_cls in (MultiScaleFlipAug3D, MultiScaleFlipAug):
43
44
45
46
            return None
    elif callable(transform):
        if isinstance(transform, loading_functions):
            return True
47
        if isinstance(transform, (MultiScaleFlipAug3D, MultiScaleFlipAug)):
48
49
50
51
            return None
    return False


52
53
54
55
def get_loading_pipeline(pipeline):
    """Only keep loading image, points and annotations related configuration.

    Args:
56
57
        pipeline (list[dict] | list[:obj:`Pipeline`]):
            Data pipeline configs or list of pipeline functions.
58
59

    Returns:
60
61
        list[dict] | list[:obj:`Pipeline`]): The new pipeline list with only
            keep loading image, points and annotations related configuration.
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Examples:
        >>> pipelines = [
        ...    dict(type='LoadPointsFromFile',
        ...         coord_type='LIDAR', load_dim=4, use_dim=4),
        ...    dict(type='LoadImageFromFile'),
        ...    dict(type='LoadAnnotations3D',
        ...         with_bbox=True, with_label_3d=True),
        ...    dict(type='Resize',
        ...         img_scale=[(640, 192), (2560, 768)], keep_ratio=True),
        ...    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        ...    dict(type='PointsRangeFilter',
        ...         point_cloud_range=point_cloud_range),
        ...    dict(type='ObjectRangeFilter',
        ...         point_cloud_range=point_cloud_range),
        ...    dict(type='PointShuffle'),
        ...    dict(type='Normalize', **img_norm_cfg),
        ...    dict(type='Pad', size_divisor=32),
        ...    dict(type='DefaultFormatBundle3D', class_names=class_names),
        ...    dict(type='Collect3D',
        ...         keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
        ...    ]
        >>> expected_pipelines = [
        ...    dict(type='LoadPointsFromFile',
        ...         coord_type='LIDAR', load_dim=4, use_dim=4),
        ...    dict(type='LoadImageFromFile'),
        ...    dict(type='LoadAnnotations3D',
        ...         with_bbox=True, with_label_3d=True),
        ...    dict(type='DefaultFormatBundle3D', class_names=class_names),
        ...    dict(type='Collect3D',
        ...         keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
        ...    ]
94
        >>> assert expected_pipelines == \
95
96
        ...        get_loading_pipeline(pipelines)
    """
97
98
99
100
101
102
103
104
105
106
107
108
109
    loading_pipeline = []
    for transform in pipeline:
        is_loading = is_loading_function(transform)
        if is_loading is None:  # MultiScaleFlipAug3D
            # extract its inner pipeline
            if isinstance(transform, dict):
                inner_pipeline = transform.get('transforms', [])
            else:
                inner_pipeline = transform.transforms.transforms
            loading_pipeline.extend(get_loading_pipeline(inner_pipeline))
        elif is_loading:
            loading_pipeline.append(transform)
    assert len(loading_pipeline) > 0, \
110
111
        'The data pipeline in your config file must include ' \
        'loading step.'
112
    return loading_pipeline
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127


def extract_result_dict(results, key):
    """Extract and return the data corresponding to key in result dict.

    ``results`` is a dict output from `pipeline(input_dict)`, which is the
        loaded data from ``Dataset`` class.
    The data terms inside may be wrapped in list, tuple and DataContainer, so
        this function essentially extracts data from these wrappers.

    Args:
        results (dict): Data loaded using pipeline.
        key (str): Key of the desired data.

    Returns:
128
        np.ndarray | torch.Tensor: Data term.
129
130
131
132
133
134
135
136
137
138
139
    """
    if key not in results.keys():
        return None
    # results[key] may be data or list[data] or tuple[data]
    # data may be wrapped inside DataContainer
    data = results[key]
    if isinstance(data, (list, tuple)):
        data = data[0]
    if isinstance(data, mmcv.parallel.DataContainer):
        data = data._data
    return data