local_visualizer.py 41.5 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import copy
3
4
5
import math
import time
from typing import List, Optional, Sequence, Tuple, Union
ZCMax's avatar
ZCMax committed
6

7
import matplotlib.pyplot as plt
ZCMax's avatar
ZCMax committed
8
9
import mmcv
import numpy as np
10
11
12
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
13
from mmdet.visualization import DetLocalVisualizer
ZCMax's avatar
ZCMax committed
14
from mmengine.dist import master_only
15
from mmengine.structures import InstanceData
16
from mmengine.visualization import Visualizer as MMENGINE_Visualizer
17
from mmengine.visualization.utils import check_type, tensor2ndarray
ZCMax's avatar
ZCMax committed
18
19
from torch import Tensor

20
from mmdet3d.registry import VISUALIZERS
21
22
23
24
25
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
                                CameraInstance3DBoxes, Coord3DMode,
                                DepthInstance3DBoxes, Det3DDataSample,
                                LiDARInstance3DBoxes, PointData,
                                points_cam2img)
26
27
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
                        proj_lidar_bbox3d_to_img, to_depth_mode)
zhangshilong's avatar
zhangshilong committed
28

ZCMax's avatar
ZCMax committed
29
30
31
try:
    import open3d as o3d
    from open3d import geometry
32
    from open3d.visualization import Visualizer
ZCMax's avatar
ZCMax committed
33
except ImportError:
34
    o3d = geometry = Visualizer = None
ZCMax's avatar
ZCMax committed
35
36
37
38
39
40
41
42
43
44


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
zhangshilong's avatar
zhangshilong committed
45
      - draw_seg_mask: draw segmentation mask via per-point colorization
ZCMax's avatar
ZCMax committed
46
47
48

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
49
50
51
        points (np.ndarray, optional): Points to visualize with shape (N, 3+C).
            Defaults to None.
        image (np.ndarray, optional): The origin image to draw. The format
ZCMax's avatar
ZCMax committed
52
            should be RGB. Defaults to None.
53
54
55
        pcd_mode (int): The point cloud mode (coordinates): 0 represents LiDAR,
            1 represents CAMERA, 2 represents Depth. Defaults to 0.
        vis_backends (List[dict], optional): Visual backend config list.
ZCMax's avatar
ZCMax committed
56
57
58
59
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
            Defaults to None.
60
61
62
63
64
65
66
        bbox_color (str or Tuple[int], optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str or Tuple[int]): Color of texts. The tuple of color
            should be in BGR order. Defaults to (200, 200, 200).
        mask_color (str or Tuple[int], optional): Color of masks. The tuple of
            color should be in BGR order. Defaults to None.
        line_width (int or float): The linewidth of lines. Defaults to 3.
67
        frame_cfg (dict): The coordinate frame config while Open3D
zhangshilong's avatar
zhangshilong committed
68
69
            visualization initialization.
            Defaults to dict(size=1, origin=[0, 0, 0]).
70
71
        alpha (int or float): The transparency of bboxes or mask.
            Defaults to 0.8.
72
73
        multi_imgs_col (int): The number of columns in arrangement when showing
            multi-view images.
ZCMax's avatar
ZCMax committed
74
75
76
77

    Examples:
        >>> import numpy as np
        >>> import torch
78
        >>> from mmengine.structures import InstanceData
79
80
        >>> from mmdet3d.structures import (DepthInstance3DBoxes
        ...                                 Det3DDataSample)
zhangshilong's avatar
zhangshilong committed
81
        >>> from mmdet3d.visualization import Det3DLocalVisualizer
ZCMax's avatar
ZCMax committed
82
83

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
84
85
        >>> image = np.random.randint(0, 256, size=(10, 12, 3)).astype('uint8')
        >>> points = np.random.rand(1000, 3)
ZCMax's avatar
ZCMax committed
86
        >>> gt_instances_3d = InstanceData()
87
88
        >>> gt_instances_3d.bboxes_3d = DepthInstance3DBoxes(
        ...     torch.rand((5, 7)))
zhangshilong's avatar
zhangshilong committed
89
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
ZCMax's avatar
ZCMax committed
90
91
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
zhangshilong's avatar
zhangshilong committed
92
93
        >>> data_input = dict(img=image, points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
94
95
96
97
98
99
100
101
102
103
104
105
106
        ...                                       gt_det3d_data_sample)

        >>> from mmdet3d.structures import PointData
        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> points = np.random.rand(1000, 3)
        >>> gt_pts_seg = PointData()
        >>> gt_pts_seg.pts_semantic_mask = torch.randint(0, 10, (1000, ))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_pts_seg = gt_pts_seg
        >>> data_input = dict(points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                                       gt_det3d_data_sample,
        ...                                       vis_task='lidar_seg')
ZCMax's avatar
ZCMax committed
107
108
    """

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def __init__(
        self,
        name: str = 'visualizer',
        points: Optional[np.ndarray] = None,
        image: Optional[np.ndarray] = None,
        pcd_mode: int = 0,
        vis_backends: Optional[List[dict]] = None,
        save_dir: Optional[str] = None,
        bbox_color: Optional[Union[str, Tuple[int]]] = None,
        text_color: Union[str, Tuple[int]] = (200, 200, 200),
        mask_color: Optional[Union[str, Tuple[int]]] = None,
        line_width: Union[int, float] = 3,
        frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
        alpha: Union[int, float] = 0.8,
        multi_imgs_col: int = 3,
        fig_show_cfg: dict = dict(figsize=(18, 12))
    ) -> None:
ZCMax's avatar
ZCMax committed
126
127
128
129
130
131
132
133
134
135
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
136
137
138
        if points is not None:
            self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
        self.pts_seg_num = 0
139
140
        self.multi_imgs_col = multi_imgs_col
        self.fig_show_cfg.update(fig_show_cfg)
ZCMax's avatar
ZCMax committed
141

142
143
144
145
146
147
148
149
    def _clear_o3d_vis(self) -> None:
        """Clear open3d vis."""

        if hasattr(self, 'o3d_vis'):
            del self.o3d_vis
            del self.pcd
            del self.points_colors

150
    def _initialize_o3d_vis(self, frame_cfg: dict) -> Visualizer:
151
        """Initialize open3d vis according to frame_cfg.
ZCMax's avatar
ZCMax committed
152
153

        Args:
154
155
            frame_cfg (dict): The config to create coordinate frame in open3d
                vis.
ZCMax's avatar
ZCMax committed
156
157

        Returns:
158
            :obj:`o3d.visualization.Visualizer`: Created open3d vis.
ZCMax's avatar
ZCMax committed
159
        """
160
161
162
        if o3d is None or geometry is None:
            raise ImportError(
                'Please run "pip install open3d" to install open3d first.')
ZCMax's avatar
ZCMax committed
163
164
165
        o3d_vis = o3d.visualization.Visualizer()
        o3d_vis.create_window()
        # create coordinate frame
166
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
ZCMax's avatar
ZCMax committed
167
168
169
170
171
172
        o3d_vis.add_geometry(mesh_frame)
        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
173
                   pcd_mode: int = 0,
174
                   vis_mode: str = 'replace',
175
                   frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
176
                   points_color: Tuple[float] = (1, 1, 1),
ZCMax's avatar
ZCMax committed
177
178
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
179
        """Set the point cloud to draw.
ZCMax's avatar
ZCMax committed
180
181

        Args:
182
183
184
            points (np.ndarray): Points to visualize with shape (N, 3+C).
            pcd_mode (int): The point cloud mode (coordinates): 0 represents
                LiDAR, 1 represents CAMERA, 2 represents Depth. Defaults to 0.
185
            vis_mode (str): The visualization mode in Open3D:
186
187
188
189
190

                - 'replace': Replace the existing point cloud with input point
                  cloud.
                - 'add': Add input point cloud into existing point cloud.

191
                Defaults to 'replace'.
192
            frame_cfg (dict): The coordinate frame config for Open3D
193
194
                visualization initialization.
                Defaults to dict(size=1, origin=[0, 0, 0]).
195
            points_color (Tuple[float]): The color of points.
196
                Defaults to (1, 1, 1).
197
198
199
200
            points_size (int): The size of points to show on visualizer.
                Defaults to 2.
            mode (str): Indicate type of the input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
201
202
        """
        assert points is not None
203
        assert vis_mode in ('replace', 'add')
ZCMax's avatar
ZCMax committed
204
205
        check_type('points', points, np.ndarray)

206
207
208
        if not hasattr(self, 'o3d_vis'):
            self.o3d_vis = self._initialize_o3d_vis(frame_cfg)

209
210
211
212
        # for now we convert points into depth mode for visualization
        if pcd_mode != Coord3DMode.DEPTH:
            points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)

213
        if hasattr(self, 'pcd') and vis_mode != 'add':
ZCMax's avatar
ZCMax committed
214
215
216
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
217
218
219
220
        render_option = self.o3d_vis.get_render_option()
        if render_option is not None:
            render_option.point_size = points_size
            render_option.background_color = np.asarray([0, 0, 0])
ZCMax's avatar
ZCMax committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
240
        self.points_colors = points_colors
ZCMax's avatar
ZCMax committed
241
242
243
244
245

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
246
                       bboxes_3d: BaseInstance3DBoxes,
247
248
249
250
251
                       bbox_color: Tuple[float] = (0, 1, 0),
                       points_in_box_color: Tuple[float] = (1, 0, 0),
                       rot_axis: int = 2,
                       center_mode: str = 'lidar_bottom',
                       mode: str = 'xyz') -> None:
ZCMax's avatar
ZCMax committed
252
253
254
255
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
256
257
258
259
260
261
262
263
264
265
266
267
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (Tuple[float]): The color of 3D bboxes.
                Defaults to (0, 1, 0).
            points_in_box_color (Tuple[float]): The color of points inside 3D
                bboxes. Defaults to (1, 0, 0).
            rot_axis (int): Rotation axis of 3D bboxes. Defaults to 2.
            center_mode (str): Indicates the center of bbox is bottom center or
                gravity center. Available mode
                ['lidar_bottom', 'camera_bottom']. Defaults to 'lidar_bottom'.
            mode (str): Indicates the type of input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
268
269
270
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
271
272
273
274
        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if not isinstance(bboxes_3d, DepthInstance3DBoxes):
            bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)
ZCMax's avatar
ZCMax committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
            line_set.paint_uniform_color(bbox_color)
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = in_box_color

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

313
314
    def set_bev_image(self,
                      bev_image: Optional[np.ndarray] = None,
315
                      bev_shape: int = 900) -> None:
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        """Set the bev image to draw.

        Args:
            bev_image (np.ndarray, optional): The bev image to draw.
                Defaults to None.
            bev_shape (int): The bev image shape. Defaults to 900.
        """
        if bev_image is None:
            bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)

        self._image = bev_image
        self.width, self.height = bev_image.shape[1], bev_image.shape[0]
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(bev_image, origin='lower')
        # plot camera view range
        x1 = np.linspace(0, self.width / 2)
        x2 = np.linspace(self.width / 2, self.width)
        self.ax_save.plot(
            x1,
            self.width / 2 - x1,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            x2,
            x2 - self.width / 2,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            self.width / 2,
            0,
            marker='+',
            markersize=16,
            markeredgecolor='red')

    # TODO: Support bev point cloud visualization
    @master_only
    def draw_bev_bboxes(self,
                        bboxes_3d: BaseInstance3DBoxes,
                        scale: int = 15,
362
363
                        edge_colors: Union[str, Tuple[int],
                                           List[Union[str, Tuple[int]]]] = 'o',
364
                        line_styles: Union[str, List[str]] = '-',
365
366
367
368
369
370
                        line_widths: Union[int, float, List[Union[int,
                                                                  float]]] = 1,
                        face_colors: Union[str, Tuple[int],
                                           List[Union[str,
                                                      Tuple[int]]]] = 'none',
                        alpha: Union[int, float] = 1) -> MMENGINE_Visualizer:
371
372
373
        """Draw projected 3D boxes on the image.

        Args:
374
375
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
376
377
            scale (dict): Value to scale the bev bboxes for better
                visualization. Defaults to 15.
378
379
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
380
381
382
383
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'o'.
384
385
386
387
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
388
389
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
390
391
392
393
394
395
396
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'none'.
            alpha (int or float): The transparency of bboxes. Defaults to 1.
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
        bev_bboxes = tensor2ndarray(bboxes_3d.bev)
        # scale the bev bboxes for better visualization
        bev_bboxes[:, :4] *= scale
        ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
        cos_value, sin_value = np.cos(theta), np.sin(theta)
        vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
        vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
        pt1 = ctr + vec1 + vec2
        pt2 = ctr + vec1 - vec2
        pt3 = ctr - vec1 - vec2
        pt4 = ctr - vec1 + vec2
        poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
        # move the object along x-axis
        poly[:, :, 0] += self.width / 2
        poly = [p for p in poly]
        return self.draw_polygons(
            poly,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)

    @master_only
424
425
426
    def draw_points_on_image(self,
                             points: Union[np.ndarray, Tensor],
                             pts2img: np.ndarray,
427
428
                             sizes: Union[np.ndarray, int] = 3,
                             max_depth: Optional[float] = None) -> None:
429
430
431
        """Draw projected points on the image.

        Args:
432
433
434
435
            points (np.ndarray or Tensor): Points to draw.
            pts2img (np.ndarray): The transformation matrix from the coordinate
                of point cloud to image plane.
            sizes (np.ndarray or int): The marker size. Defaults to 10.
436
437
            max_depth (float): The max depth in the color map. Defaults to
                None.
438
439
440
441
442
443
        """
        check_type('points', points, (np.ndarray, Tensor))
        points = tensor2ndarray(points)
        assert self._image is not None, 'Please set image using `set_image`'
        projected_points = points_cam2img(points, pts2img, with_depth=True)
        depths = projected_points[:, 2]
444
445
446
447
        # Show depth adaptively consideing different scenes
        if max_depth is None:
            max_depth = depths.max()
        colors = (depths % max_depth) / max_depth
448
449
450
451
452
453
454
455
        # use colormap to obtain the render color
        color_map = plt.get_cmap('jet')
        self.ax_save.scatter(
            projected_points[:, 0],
            projected_points[:, 1],
            c=colors,
            cmap=color_map,
            s=sizes,
456
            alpha=0.7,
457
458
            edgecolors='none')

459
    # TODO: set bbox color according to palette
460
    @master_only
461
462
463
464
465
466
467
468
469
470
    def draw_proj_bboxes_3d(
            self,
            bboxes_3d: BaseInstance3DBoxes,
            input_meta: dict,
            edge_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            line_styles: Union[str, List[str]] = '-',
            line_widths: Union[int, float, List[Union[int, float]]] = 2,
            face_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
471
472
            alpha: Union[int, float] = 0.4,
            img_size: Optional[Tuple] = None):
ZCMax's avatar
ZCMax committed
473
474
475
        """Draw projected 3D boxes on the image.

        Args:
476
477
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
ZCMax's avatar
ZCMax committed
478
            input_meta (dict): Input meta information.
479
480
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
481
482
483
484
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'royalblue'.
485
486
487
488
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
489
490
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
491
492
493
494
495
496
497
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'royalblue'.
            alpha (int or float): The transparency of bboxes. Defaults to 0.4.
498
            img_size (tuple, optional): The size (w, h) of the image.
ZCMax's avatar
ZCMax committed
499
500
501
502
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

503
        if isinstance(bboxes_3d, DepthInstance3DBoxes):
ZCMax's avatar
ZCMax committed
504
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
505
        elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
ZCMax's avatar
ZCMax committed
506
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
507
        elif isinstance(bboxes_3d, CameraInstance3DBoxes):
ZCMax's avatar
ZCMax committed
508
509
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
510
            raise NotImplementedError('unsupported box type!')
ZCMax's avatar
ZCMax committed
511

512
        corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)
513
514
515
516
517
518
519
520
        if img_size is not None:
            # Filter out the bbox where half of stuff is outside the image.
            # This is for the visualization of multi-view image.
            valid_point_idx = (corners_2d[..., 0] >= 0) & \
                        (corners_2d[..., 0] <= img_size[0]) & \
                        (corners_2d[..., 1] >= 0) & (corners_2d[..., 1] <= img_size[1])  # noqa: E501
            valid_bbox_idx = valid_point_idx.sum(axis=-1) >= 4
            corners_2d = corners_2d[valid_bbox_idx]
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

        lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
        lines_verts = corners_2d[:, lines_verts_idx, :]
        front_polys = corners_2d[:, 4:, :]
        codes = [Path.LINETO] * lines_verts.shape[1]
        codes[0] = Path.MOVETO
        pathpatches = []
        for i in range(len(corners_2d)):
            verts = lines_verts[i]
            pth = Path(verts, codes)
            pathpatches.append(PathPatch(pth))

        p = PatchCollection(
            pathpatches,
            facecolors='none',
            edgecolors=edge_colors,
            linewidths=line_widths,
            linestyles=line_styles)

        self.ax_save.add_collection(p)

        # draw a mask on the front of project bboxes
        front_polys = [front_poly for front_poly in front_polys]
        return self.draw_polygons(
            front_polys,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)
ZCMax's avatar
ZCMax committed
551

552
    @master_only
553
    def draw_seg_mask(self, seg_mask_colors: np.ndarray) -> None:
ZCMax's avatar
ZCMax committed
554
555
556
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
557
558
559
            seg_mask_colors (np.ndarray): The segmentation mask with shape
                (N, 6), whose first 3 dims are point coordinates and last 3
                dims are converted colors.
ZCMax's avatar
ZCMax committed
560
561
562
563
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
564
        self.pts_seg_num += 1
ZCMax's avatar
ZCMax committed
565
        offset = (np.array(self.pcd.points).max(0) -
566
                  np.array(self.pcd.points).min(0))[0] * 1.2 * self.pts_seg_num
ZCMax's avatar
ZCMax committed
567
568
569
570
571
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[offset, 0, 0])  # create coordinate frame for seg
        self.o3d_vis.add_geometry(mesh_frame)
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
572
        self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')
ZCMax's avatar
ZCMax committed
573

574
575
576
577
578
579
    def _draw_instances_3d(self,
                           data_input: dict,
                           instances: InstanceData,
                           input_meta: dict,
                           vis_task: str,
                           palette: Optional[List[tuple]] = None) -> dict:
ZCMax's avatar
ZCMax committed
580
581
582
583
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
584
585
586
587
588
589
590
            instances (:obj:`InstanceData`): Data structure for instance-level
                annotations or predictions.
            input_meta (dict): Meta information.
            vis_task (str): Visualization task, it includes: 'lidar_det',
                'multi-modality_det', 'mono_det'.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
ZCMax's avatar
ZCMax committed
591
592

        Returns:
593
            dict: The drawn point cloud and image whose channel is RGB.
ZCMax's avatar
ZCMax committed
594
595
        """

596
597
598
599
        # Only visualize when there is at least one instance
        if not len(instances) > 0:
            return None

ZCMax's avatar
ZCMax committed
600
601
        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes

602
        data_3d = dict()
ZCMax's avatar
ZCMax committed
603

604
        if vis_task in ['lidar_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
605
606
607
608
609
610
611
612
613
614
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

615
            self.set_points(points, pcd_mode=2)
ZCMax's avatar
ZCMax committed
616
617
            self.draw_bboxes_3d(bboxes_3d_depth)

618
619
            data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
            data_3d['points'] = points
ZCMax's avatar
ZCMax committed
620

621
        if vis_task in ['mono_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
622
            assert 'img' in data_input
623
            img = data_input['img']
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
            if isinstance(img, list) or (isinstance(img, (np.ndarray, Tensor))
                                         and len(img.shape) == 4):
                # show multi-view images
                img_size = img[0].shape[:2] if isinstance(
                    img, list) else img.shape[-2:]  # noqa: E501
                img_col = self.multi_imgs_col
                img_row = math.ceil(len(img) / img_col)
                composed_img = np.zeros(
                    (img_size[0] * img_row, img_size[1] * img_col, 3),
                    dtype=np.uint8)
                for i, single_img in enumerate(img):
                    # Note that we should keep the same order of elements both
                    # in `img` and `input_meta`
                    if isinstance(single_img, Tensor):
                        single_img = single_img.permute(1, 2, 0).numpy()
                        single_img = single_img[..., [2, 1, 0]]  # bgr to rgb
                    self.set_image(single_img)
                    single_img_meta = dict()
                    for key, meta in input_meta.items():
                        if isinstance(meta,
                                      (Sequence, np.ndarray,
                                       Tensor)) and len(meta) == len(img):
                            single_img_meta[key] = meta[i]
                        else:
                            single_img_meta[key] = meta
                    self.draw_proj_bboxes_3d(
                        bboxes_3d,
                        single_img_meta,
                        img_size=single_img.shape[:2][::-1])
                    if vis_task == 'mono_det' and hasattr(
                            instances, 'centers_2d'):
                        centers_2d = instances.centers_2d
                        self.draw_points(centers_2d)
                    composed_img[(i // img_col) *
                                 img_size[0]:(i // img_col + 1) * img_size[0],
                                 (i % img_col) *
                                 img_size[1]:(i % img_col + 1) *
                                 img_size[1]] = self.get_image()
                data_3d['img'] = composed_img
            else:
                # show single-view image
                # TODO: Solve the problem: some line segments of 3d bboxes are
                # out of image by a large margin
                if isinstance(data_input['img'], Tensor):
                    img = img.permute(1, 2, 0).numpy()
                    img = img[..., [2, 1, 0]]  # bgr to rgb
                self.set_image(img)
                self.draw_proj_bboxes_3d(bboxes_3d, input_meta)
                if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
                    centers_2d = instances.centers_2d
                    self.draw_points(centers_2d)
                drawn_img = self.get_image()
                data_3d['img'] = drawn_img
ZCMax's avatar
ZCMax committed
677
678
679
680

        return data_3d

    def _draw_pts_sem_seg(self,
681
                          points: Union[Tensor, np.ndarray],
zhangshilong's avatar
zhangshilong committed
682
                          pts_seg: PointData,
ZCMax's avatar
ZCMax committed
683
                          palette: Optional[List[tuple]] = None,
684
                          ignore_index: Optional[int] = None) -> None:
685
686
687
        """Draw 3D semantic mask of GT or prediction.

        Args:
688
689
690
691
692
693
            points (Tensor or np.ndarray): The input point cloud to draw.
            pts_seg (:obj:`PointData`): Data structure for pixel-level
                annotations or predictions.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
            ignore_index (int, optional): Ignore category. Defaults to None.
694
        """
ZCMax's avatar
ZCMax committed
695
696
697
698
        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
699
        palette = np.array(palette)
ZCMax's avatar
ZCMax committed
700
701
702
703
704
705
706
707

        if ignore_index is not None:
            points = points[pts_sem_seg != ignore_index]
            pts_sem_seg = pts_sem_seg[pts_sem_seg != ignore_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

708
        self.set_points(points, pcd_mode=2, vis_mode='add')
709
        self.draw_seg_mask(seg_color)
ZCMax's avatar
ZCMax committed
710
711
712

    @master_only
    def show(self,
713
             save_path: Optional[str] = None,
ZCMax's avatar
ZCMax committed
714
715
716
717
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = 0,
718
719
             continue_key: str = ' ',
             vis_task: str = 'lidar_det') -> None:
720
        """Show the drawn point cloud/image.
ZCMax's avatar
ZCMax committed
721
722

        Args:
723
            save_path (str, optional): Path to save open3d visualized results.
724
725
726
727
                Defaults to None.
            drawn_img_3d (np.ndarray, optional): The image to show. If
                drawn_img_3d is not None, it will show the image got by
                Visualizer. Defaults to None.
ZCMax's avatar
ZCMax committed
728
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
729
730
731
732
733
734
                is not None, it will show the image got by Visualizer.
                Defaults to None.
            win_name (str): The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special value that
                means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to ' '.
ZCMax's avatar
ZCMax committed
735
        """
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        if vis_task == 'multi-modality_det':
            img_wait_time = 0.5
        else:
            img_wait_time = wait_time

        # In order to show multi-modal results at the same time, we show image
        # firstly and then show point cloud since the running of
        # Open3D will block the process
        if hasattr(self, '_image'):
            if drawn_img is None and drawn_img_3d is None:
                # use the image got by Visualizer.get_image()
                super().show(drawn_img_3d, win_name, img_wait_time,
                             continue_key)
            else:
                if drawn_img_3d is not None:
                    super().show(drawn_img_3d, win_name, img_wait_time,
                                 continue_key)
                if drawn_img is not None:
                    super().show(drawn_img, win_name, img_wait_time,
                                 continue_key)

757
        if hasattr(self, 'o3d_vis'):
758
759
760
761
762
763
            self.o3d_vis.poll_events()
            self.o3d_vis.update_renderer()
            if wait_time > 0:
                time.sleep(wait_time)
            else:
                self.o3d_vis.run()
764
            if save_path is not None:
765
766
767
                if not (save_path.endswith('.png')
                        or save_path.endswith('.jpg')):
                    save_path += '.png'
768
                self.o3d_vis.capture_screen_image(save_path)
769
770
771

            # TODO: support more flexible window control
            self.o3d_vis.clear_geometries()
ZCMax's avatar
ZCMax committed
772
            self.o3d_vis.destroy_window()
773
            self.o3d_vis.close()
774
            self._clear_o3d_vis()
ZCMax's avatar
ZCMax committed
775

776
777
    # TODO: Support Visualize the 3D results from image and point cloud
    # respectively
ZCMax's avatar
ZCMax committed
778
779
780
781
    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
782
                       data_sample: Optional[Det3DDataSample] = None,
ZCMax's avatar
ZCMax committed
783
784
785
786
787
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
788
                       o3d_save_path: Optional[str] = None,
789
                       vis_task: str = 'mono_det',
ZCMax's avatar
ZCMax committed
790
791
792
793
                       pred_score_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

794
795
796
797
798
        - If GT and prediction are plotted at the same time, they are displayed
          in a stitched image where the left image is the ground truth and the
          right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and the images
          will be displayed in a local window.
799
        - If ``out_file`` is specified, the drawn image will be saved to
800
          ``out_file``. It is usually used when the display is not available.
ZCMax's avatar
ZCMax committed
801
802
803
804
805

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
806
            data_sample (:obj:`Det3DDataSample`, optional): Prediction
ZCMax's avatar
ZCMax committed
807
808
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
809
                Defaults to True.
ZCMax's avatar
ZCMax committed
810
811
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
812
813
            show (bool): Whether to display the drawn point clouds and image.
                Defaults to False.
ZCMax's avatar
ZCMax committed
814
            wait_time (float): The interval of show (s). Defaults to 0.
815
            out_file (str, optional): Path to output file. Defaults to None.
816
            o3d_save_path (str, optional): Path to save open3d visualized
817
818
                results. Defaults to None.
            vis_task (str): Visualization task. Defaults to 'mono_det'.
ZCMax's avatar
ZCMax committed
819
820
821
822
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
        """
823
824
825
826
827
828
        assert vis_task in (
            'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
            'multi-modality_det'), f'got unexpected vis_task {vis_task}.'
        classes = self.dataset_meta.get('classes', None)
        # For object detection datasets, no palette is saved
        palette = self.dataset_meta.get('palette', None)
ZCMax's avatar
ZCMax committed
829
830
        ignore_index = self.dataset_meta.get('ignore_index', None)

831
832
833
834
835
        gt_data_3d = None
        pred_data_3d = None
        gt_img_data = None
        pred_img_data = None

836
837
838
839
840
841
        if draw_gt and data_sample is not None:
            if 'gt_instances_3d' in data_sample:
                gt_data_3d = self._draw_instances_3d(
                    data_input, data_sample.gt_instances_3d,
                    data_sample.metainfo, vis_task, palette)
            if 'gt_instances' in data_sample:
ChaimZhu's avatar
ChaimZhu committed
842
843
                if len(data_sample.gt_instances) > 0:
                    assert 'img' in data_input
844
                    img = data_input['img']
ChaimZhu's avatar
ChaimZhu committed
845
846
847
848
849
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    gt_img_data = self._draw_instances(
                        img, data_sample.gt_instances, classes, palette)
850
            if 'gt_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
851
852
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
853
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
854
855
                                            'segmentation results.'
                assert 'points' in data_input
856
                self._draw_pts_sem_seg(data_input['points'],
857
                                       data_sample.gt_pts_seg, palette,
858
                                       ignore_index)
ZCMax's avatar
ZCMax committed
859

860
861
862
        if draw_pred and data_sample is not None:
            if 'pred_instances_3d' in data_sample:
                pred_instances_3d = data_sample.pred_instances_3d
863
                # .cpu can not be used for BaseInstance3DBoxes
864
                # so we need to use .to('cpu')
ZCMax's avatar
ZCMax committed
865
                pred_instances_3d = pred_instances_3d[
866
                    pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
ZCMax's avatar
ZCMax committed
867
868
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
869
                                                       data_sample.metainfo,
ZCMax's avatar
ZCMax committed
870
                                                       vis_task, palette)
871
872
873
            if 'pred_instances' in data_sample:
                if 'img' in data_input and len(data_sample.pred_instances) > 0:
                    pred_instances = data_sample.pred_instances
874
                    pred_instances = pred_instances[
875
                        pred_instances.scores > pred_score_thr].cpu()
876
                    img = data_input['img']
877
878
879
880
881
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    pred_img_data = self._draw_instances(
                        img, pred_instances, classes, palette)
882
            if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
883
884
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
885
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
886
887
                                            'segmentation results.'
                assert 'points' in data_input
888
889
890
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       ignore_index)
ZCMax's avatar
ZCMax committed
891
892

        # monocular 3d object detection image
893
        if vis_task in ['mono_det', 'multi-modality_det']:
894
895
896
897
898
899
900
            if gt_data_3d is not None and pred_data_3d is not None:
                drawn_img_3d = np.concatenate(
                    (gt_data_3d['img'], pred_data_3d['img']), axis=1)
            elif gt_data_3d is not None:
                drawn_img_3d = gt_data_3d['img']
            elif pred_data_3d is not None:
                drawn_img_3d = pred_data_3d['img']
901
902
            else:  # both instances of gt and pred are empty
                drawn_img_3d = None
ZCMax's avatar
ZCMax committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
918
                o3d_save_path,
ZCMax's avatar
ZCMax committed
919
920
921
                drawn_img_3d,
                drawn_img,
                win_name=name,
922
923
                wait_time=wait_time,
                vis_task=vis_task)
ZCMax's avatar
ZCMax committed
924
925

        if out_file is not None:
926
927
928
            # check the suffix of the name of image file
            if not (out_file.endswith('.png') or out_file.endswith('.jpg')):
                out_file = f'{out_file}.png'
ZCMax's avatar
ZCMax committed
929
            if drawn_img_3d is not None:
930
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
931
            if drawn_img is not None:
932
                mmcv.imwrite(drawn_img[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
933
934
        else:
            self.add_image(name, drawn_img_3d, step)