README.md 3.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Group-Free 3D Object Detection via Transformers

## Introduction

<!-- [ALGORITHM] -->

We implement Group-Free-3D and provide the result and checkpoints on ScanNet datasets.

```
@article{liu2021,
  title={Group-Free 3D Object Detection via Transformers},
  author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin},
  journal={arXiv preprint arXiv:2104.00678},
  year={2021}
}
```

## Results

### ScanNet

|  Method  |  Backbone   | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| :------: | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [L6, O256](./groupfree3d_8x4_scannet-3d-18class-L6-O256.py ) |    PointNet++     |  3x    |6.7||65.59 (65.67*)|48.43 (47.74*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347-3499eb55.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347.log.json)|
| [L12, O256](./groupfree3d_8x4_scannet-3d-18class-L12-O256.py ) |    PointNet++     |  3x    |9.4||67.68 (66.22*)|49.30 (48.95*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907-1c5551ad.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907.log.json)|
| [L12, O256](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py ) |    PointNet++w2x     |  3x    |13.3||67.09 (67.30*)|50.76 (50.44*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301-944f0ac0.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301.log.json)|
| [L12, O512](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py ) |    PointNet++w2x     |  3x    |18.8||68.31 (68.20*)|51.73 (51.31*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204-187b71c7.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204.log.json)|

**Notes:**

- We report the best results (AP@0.50) on validation set during each training. * means the evaluation method in the paper: we train each setting 5 times and test each training trial 5 times, then the average performance of these 25 trials is reported to account for algorithm randomness.
- We use 4 GPUs for training by default as the original code.