# Group-Free 3D Object Detection via Transformers ## Introduction We implement Group-Free-3D and provide the result and checkpoints on ScanNet datasets. ``` @article{liu2021, title={Group-Free 3D Object Detection via Transformers}, author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin}, journal={arXiv preprint arXiv:2104.00678}, year={2021} } ``` ## Results ### ScanNet | Method | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | :------: | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | [L6, O256](./groupfree3d_8x4_scannet-3d-18class-L6-O256.py ) | PointNet++ | 3x |6.7||65.59 (65.67*)|48.43 (47.74*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347-3499eb55.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347.log.json)| | [L12, O256](./groupfree3d_8x4_scannet-3d-18class-L12-O256.py ) | PointNet++ | 3x |9.4||67.68 (66.22*)|49.30 (48.95*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907-1c5551ad.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907.log.json)| | [L12, O256](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py ) | PointNet++w2x | 3x |13.3||67.09 (67.30*)|50.76 (50.44*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301-944f0ac0.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301.log.json)| | [L12, O512](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py ) | PointNet++w2x | 3x |18.8||68.31 (68.20*)|51.73 (51.31*)|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204-187b71c7.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204.log.json)| **Notes:** - We report the best results (AP@0.50) on validation set during each training. * means the evaluation method in the paper: we train each setting 5 times and test each training trial 5 times, then the average performance of these 25 trials is reported to account for algorithm randomness. - We use 4 GPUs for training by default as the original code.