test_sunrgbd_dataset.py 13.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
liyinhao's avatar
liyinhao committed
2
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
3
import pytest
liyinhao's avatar
liyinhao committed
4
import torch
liyinhao's avatar
liyinhao committed
5

6
from mmdet3d.datasets import SUNRGBDDataset
liyinhao's avatar
liyinhao committed
7
8


9
def _generate_sunrgbd_dataset_config():
liyinhao's avatar
liyinhao committed
10
    root_path = './tests/data/sunrgbd'
11
    # in coordinate system refactor, this test file is modified
liyinhao's avatar
liyinhao committed
12
13
14
15
16
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                   'dresser', 'night_stand', 'bookshelf', 'bathtub')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
17
            type='LoadPointsFromFile',
18
            coord_type='DEPTH',
zhangwenwei's avatar
zhangwenwei committed
19
            shift_height=True,
liyinhao's avatar
liyinhao committed
20
21
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
22
        dict(type='LoadAnnotations3D'),
liyinhao's avatar
liyinhao committed
23
        dict(
wuyuefeng's avatar
wuyuefeng committed
24
25
26
27
28
29
30
31
32
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=0.5,
        ),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.523599, 0.523599],
            scale_ratio_range=[0.85, 1.15],
            shift_height=True),
33
        dict(type='PointSample', num_points=5),
liyinhao's avatar
liyinhao committed
34
        dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
35
        dict(
liyinhao's avatar
liyinhao committed
36
37
38
            type='Collect3D',
            keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'],
            meta_keys=[
wuyuefeng's avatar
wuyuefeng committed
39
40
                'file_name', 'pcd_horizontal_flip', 'sample_idx',
                'pcd_scale_factor', 'pcd_rotation'
liyinhao's avatar
liyinhao committed
41
            ]),
liyinhao's avatar
liyinhao committed
42
    ]
43
44
    modality = dict(use_lidar=True, use_camera=False)
    return root_path, ann_file, class_names, pipelines, modality
liyinhao's avatar
liyinhao committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

def _generate_sunrgbd_multi_modality_dataset_config():
    root_path = './tests/data/sunrgbd'
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                   'dresser', 'night_stand', 'bookshelf', 'bathtub')
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    pipelines = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations3D'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 600), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.0),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=0.5,
        ),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.523599, 0.523599],
            scale_ratio_range=[0.85, 1.15],
            shift_height=True),
78
        dict(type='PointSample', num_points=5),
79
80
81
82
83
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
                'img', 'gt_bboxes', 'gt_labels', 'points', 'gt_bboxes_3d',
84
                'gt_labels_3d'
85
86
87
88
89
90
91
92
93
94
95
96
97
            ])
    ]
    modality = dict(use_lidar=True, use_camera=True)
    return root_path, ann_file, class_names, pipelines, modality


def test_getitem():
    np.random.seed(0)
    root_path, ann_file, class_names, pipelines, modality = \
        _generate_sunrgbd_dataset_config()

    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
liyinhao's avatar
liyinhao committed
98
99
100
    data = sunrgbd_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
101
    gt_labels_3d = data['gt_labels_3d']._data
zhangwenwei's avatar
zhangwenwei committed
102
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
103
104
105
    pcd_horizontal_flip = data['img_metas']._data['pcd_horizontal_flip']
    pcd_scale_factor = data['img_metas']._data['pcd_scale_factor']
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
106
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
107
108
109
110
111
112
113
    pcd_rotation_expected = np.array([[0.99889565, 0.04698427, 0.],
                                      [-0.04698427, 0.99889565, 0.],
                                      [0., 0., 1.]])
    assert file_name == './tests/data/sunrgbd/points/000001.bin'
    assert pcd_horizontal_flip is False
    assert abs(pcd_scale_factor - 0.9770964398016714) < 1e-5
    assert np.allclose(pcd_rotation, pcd_rotation_expected, 1e-3)
liyinhao's avatar
liyinhao committed
114
    assert sample_idx == 1
wuyuefeng's avatar
wuyuefeng committed
115
116
117
118
119
    expected_points = torch.tensor([[-0.9904, 1.2596, 0.1105, 0.0905],
                                    [-0.9948, 1.2758, 0.0437, 0.0238],
                                    [-0.9866, 1.2641, 0.0504, 0.0304],
                                    [-0.9915, 1.2586, 0.1265, 0.1065],
                                    [-0.9890, 1.2561, 0.1216, 0.1017]])
wuyuefeng's avatar
wuyuefeng committed
120
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
121
122
123
        [[0.8308, 4.1168, -1.2035, 2.2493, 1.8444, 1.9245, 1.6486],
         [2.3002, 4.8149, -1.2442, 0.5718, 0.8629, 0.9510, 1.6030],
         [-1.1477, 1.8090, -1.1725, 0.6965, 1.5273, 2.0563, 0.0552]])
124
125
    # coord sys refactor (rotation is correct but yaw has to be reversed)
    expected_gt_bboxes_3d[:, 6:] = -expected_gt_bboxes_3d[:, 6:]
liyinhao's avatar
liyinhao committed
126
    expected_gt_labels = np.array([0, 7, 6])
127
    original_classes = sunrgbd_dataset.CLASSES
liyinhao's avatar
liyinhao committed
128

wuyuefeng's avatar
wuyuefeng committed
129
130
    assert torch.allclose(points, expected_points, 1e-2)
    assert torch.allclose(gt_bboxes_3d.tensor, expected_gt_bboxes_3d, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
131
    assert np.all(gt_labels_3d.numpy() == expected_gt_labels)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    assert original_classes == class_names

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=['bed', 'table'])
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ['bed', 'table']

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=('bed', 'table'))
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ('bed', 'table')

    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('bed\ntable\n')

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ['bed', 'table']
liyinhao's avatar
liyinhao committed
153

154
155
156
157
158
159
160
161
162
163
164
165
    # test multi-modality SUN RGB-D dataset
    np.random.seed(0)
    root_path, ann_file, class_names, multi_modality_pipelines, modality = \
        _generate_sunrgbd_multi_modality_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, multi_modality_pipelines, modality=modality)
    data = sunrgbd_dataset[0]

    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    img = data['img']._data
166
    depth2img = data['img_metas']._data['depth2img']
167

168
169
170
171
172
173
174
175
    expected_rt_mat = np.array([[0.97959, 0.012593, -0.20061],
                                [0.012593, 0.99223, 0.12377],
                                [0.20061, -0.12377, 0.97182]])
    expected_k_mat = np.array([[529.5, 0., 0.], [0., 529.5, 0.],
                               [365., 265., 1.]])
    rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                       ]) @ expected_rt_mat.transpose(1, 0)
    expected_depth2img = expected_k_mat @ rt_mat
176
177
178
179
180

    assert torch.allclose(points, expected_points, 1e-2)
    assert torch.allclose(gt_bboxes_3d.tensor, expected_gt_bboxes_3d, 1e-3)
    assert np.all(gt_labels_3d.numpy() == expected_gt_labels)
    assert img.shape[:] == (3, 608, 832)
181
    assert np.allclose(depth2img, expected_depth2img)
182

liyinhao's avatar
liyinhao committed
183
184

def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
185
186
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
187
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
188
189
190
191
    root_path, ann_file, _, pipelines, modality = \
        _generate_sunrgbd_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
liyinhao's avatar
liyinhao committed
192
193
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
194
195
196
197
198
199
200
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor(
            [[1.0473, 4.1687, -1.2317, 2.3021, 1.8876, 1.9696, 1.6956],
             [2.5831, 4.8117, -1.2733, 0.5852, 0.8832, 0.9733, 1.6500],
             [-1.0864, 1.9045, -1.2000, 0.7128, 1.5631, 2.1045, 0.1022]]))
    pred_boxes['labels_3d'] = torch.tensor([0, 7, 6])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0])
liyinhao's avatar
liyinhao committed
201
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
202
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
203
    ap_dict = sunrgbd_dataset.evaluate(results, metric)
liyinhao's avatar
liyinhao committed
204
205
206
    bed_precision_25 = ap_dict['bed_AP_0.25']
    dresser_precision_25 = ap_dict['dresser_AP_0.25']
    night_stand_precision_25 = ap_dict['night_stand_AP_0.25']
liyinhao's avatar
liyinhao committed
207
208
209
    assert abs(bed_precision_25 - 1) < 0.01
    assert abs(dresser_precision_25 - 1) < 0.01
    assert abs(night_stand_precision_25 - 1) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
210
211
212
213
214
215
216
217


def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
218
219
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
220
    root_path, ann_file, class_names, pipelines, modality = \
221
222
223
        _generate_sunrgbd_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
yinchimaoliang's avatar
yinchimaoliang committed
224
225
226
227
228
229
230
231
232
233
234
235
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[1.1500, 4.2614, -1.0669, 1.3219, 2.1593, 1.0267, 1.6473],
             [-0.9583, 2.1916, -1.0881, 0.6213, 1.3022, 1.6275, -3.0720],
             [2.5697, 4.8152, -1.1157, 0.5421, 0.7019, 0.7896, 1.6712],
             [0.7283, 2.5448, -1.0356, 0.7691, 0.9056, 0.5771, 1.7121],
             [-0.9860, 3.2413, -1.2349, 0.5110, 0.9940, 1.1245, 0.3295]]))
    scores_3d = torch.tensor(
        [1.5280e-01, 1.6682e-03, 6.2811e-04, 1.2860e-03, 9.4229e-06])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
236
    sunrgbd_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
237
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
238
239
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
240
241
242
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
243
244
    tmp_dir.cleanup()

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    # test show with pipeline
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    sunrgbd_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

270
271
272
    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
273
    root_path, ann_file, class_names, multi_modality_pipelines, modality = \
274
275
276
        _generate_sunrgbd_multi_modality_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, multi_modality_pipelines, modality=modality)
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    sunrgbd_dataset.show(results, temp_dir, False, multi_modality_pipelines)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    img_file_path = osp.join(temp_dir, '000001', '000001_img.png')
    img_pred_path = osp.join(temp_dir, '000001', '000001_pred.png')
    img_gt_file = osp.join(temp_dir, '000001', '000001_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()

    # test multi-modality show with pipeline
    eval_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
305
        dict(type='Collect3D', keys=['points', 'img'])
306
307
308
309
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    sunrgbd_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
310
311
312
313
314
315
316
317
318
319
320
321
322
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    img_file_path = osp.join(temp_dir, '000001', '000001_img.png')
    img_pred_path = osp.join(temp_dir, '000001', '000001_pred.png')
    img_gt_file = osp.join(temp_dir, '000001', '000001_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()