"docs/source/en/api/pipelines/ltx_video.md" did not exist on "8170dc368d278ec40d27bf04f58bff140cebd99e"
test_sunrgbd_dataset.py 10.6 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
2
import pytest
liyinhao's avatar
liyinhao committed
3
import torch
liyinhao's avatar
liyinhao committed
4

5
from mmdet3d.datasets import SUNRGBDDataset
liyinhao's avatar
liyinhao committed
6
7


8
def _generate_sunrgbd_dataset_config():
liyinhao's avatar
liyinhao committed
9
    root_path = './tests/data/sunrgbd'
liyinhao's avatar
liyinhao committed
10
11
12
13
14
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                   'dresser', 'night_stand', 'bookshelf', 'bathtub')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
15
            type='LoadPointsFromFile',
16
            coord_type='DEPTH',
zhangwenwei's avatar
zhangwenwei committed
17
            shift_height=True,
liyinhao's avatar
liyinhao committed
18
19
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
20
        dict(type='LoadAnnotations3D'),
liyinhao's avatar
liyinhao committed
21
        dict(
wuyuefeng's avatar
wuyuefeng committed
22
23
24
25
26
27
28
29
30
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=0.5,
        ),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.523599, 0.523599],
            scale_ratio_range=[0.85, 1.15],
            shift_height=True),
liyinhao's avatar
liyinhao committed
31
32
        dict(type='IndoorPointSample', num_points=5),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
33
        dict(
liyinhao's avatar
liyinhao committed
34
35
36
            type='Collect3D',
            keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'],
            meta_keys=[
wuyuefeng's avatar
wuyuefeng committed
37
38
                'file_name', 'pcd_horizontal_flip', 'sample_idx',
                'pcd_scale_factor', 'pcd_rotation'
liyinhao's avatar
liyinhao committed
39
            ]),
liyinhao's avatar
liyinhao committed
40
    ]
41
42
    modality = dict(use_lidar=True, use_camera=False)
    return root_path, ann_file, class_names, pipelines, modality
liyinhao's avatar
liyinhao committed
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

def _generate_sunrgbd_multi_modality_dataset_config():
    root_path = './tests/data/sunrgbd'
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                   'dresser', 'night_stand', 'bookshelf', 'bathtub')
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    pipelines = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations3D'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 600), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.0),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=0.5,
        ),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.523599, 0.523599],
            scale_ratio_range=[0.85, 1.15],
            shift_height=True),
        dict(type='IndoorPointSample', num_points=5),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
                'img', 'gt_bboxes', 'gt_labels', 'points', 'gt_bboxes_3d',
                'gt_labels_3d', 'calib'
            ])
    ]
    modality = dict(use_lidar=True, use_camera=True)
    return root_path, ann_file, class_names, pipelines, modality


def test_getitem():
    np.random.seed(0)
    root_path, ann_file, class_names, pipelines, modality = \
        _generate_sunrgbd_dataset_config()

    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
liyinhao's avatar
liyinhao committed
96
97
98
    data = sunrgbd_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
99
    gt_labels_3d = data['gt_labels_3d']._data
zhangwenwei's avatar
zhangwenwei committed
100
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
101
102
103
    pcd_horizontal_flip = data['img_metas']._data['pcd_horizontal_flip']
    pcd_scale_factor = data['img_metas']._data['pcd_scale_factor']
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
104
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
105
106
107
108
109
110
111
    pcd_rotation_expected = np.array([[0.99889565, 0.04698427, 0.],
                                      [-0.04698427, 0.99889565, 0.],
                                      [0., 0., 1.]])
    assert file_name == './tests/data/sunrgbd/points/000001.bin'
    assert pcd_horizontal_flip is False
    assert abs(pcd_scale_factor - 0.9770964398016714) < 1e-5
    assert np.allclose(pcd_rotation, pcd_rotation_expected, 1e-3)
liyinhao's avatar
liyinhao committed
112
    assert sample_idx == 1
wuyuefeng's avatar
wuyuefeng committed
113
114
115
116
117
    expected_points = torch.tensor([[-0.9904, 1.2596, 0.1105, 0.0905],
                                    [-0.9948, 1.2758, 0.0437, 0.0238],
                                    [-0.9866, 1.2641, 0.0504, 0.0304],
                                    [-0.9915, 1.2586, 0.1265, 0.1065],
                                    [-0.9890, 1.2561, 0.1216, 0.1017]])
wuyuefeng's avatar
wuyuefeng committed
118
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
119
120
121
        [[0.8308, 4.1168, -1.2035, 2.2493, 1.8444, 1.9245, 1.6486],
         [2.3002, 4.8149, -1.2442, 0.5718, 0.8629, 0.9510, 1.6030],
         [-1.1477, 1.8090, -1.1725, 0.6965, 1.5273, 2.0563, 0.0552]])
liyinhao's avatar
liyinhao committed
122
    expected_gt_labels = np.array([0, 7, 6])
123
    original_classes = sunrgbd_dataset.CLASSES
liyinhao's avatar
liyinhao committed
124

wuyuefeng's avatar
wuyuefeng committed
125
126
    assert torch.allclose(points, expected_points, 1e-2)
    assert torch.allclose(gt_bboxes_3d.tensor, expected_gt_bboxes_3d, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
127
    assert np.all(gt_labels_3d.numpy() == expected_gt_labels)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    assert original_classes == class_names

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=['bed', 'table'])
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ['bed', 'table']

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=('bed', 'table'))
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ('bed', 'table')

    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('bed\ntable\n')

    SUNRGBD_dataset = SUNRGBDDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert SUNRGBD_dataset.CLASSES != original_classes
    assert SUNRGBD_dataset.CLASSES == ['bed', 'table']
liyinhao's avatar
liyinhao committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    # test multi-modality SUN RGB-D dataset
    np.random.seed(0)
    root_path, ann_file, class_names, multi_modality_pipelines, modality = \
        _generate_sunrgbd_multi_modality_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, multi_modality_pipelines, modality=modality)
    data = sunrgbd_dataset[0]

    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    calib = data['calib']
    img = data['img']._data

    expected_Rt = np.array([[0.97959, 0.012593, -0.20061],
                            [0.012593, 0.99223, 0.12377],
                            [0.20061, -0.12377, 0.97182]])
    expected_K = np.array([[529.5, 0., 0.], [0., 529.5, 0.], [365., 265., 1.]])

    assert torch.allclose(points, expected_points, 1e-2)
    assert torch.allclose(gt_bboxes_3d.tensor, expected_gt_bboxes_3d, 1e-3)
    assert np.all(gt_labels_3d.numpy() == expected_gt_labels)
    assert img.shape[:] == (3, 608, 832)
    assert np.allclose(calib['Rt'], expected_Rt)
    assert np.allclose(calib['K'], expected_K)

liyinhao's avatar
liyinhao committed
176
177

def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
178
179
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
180
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
181
182
183
184
    root_path, ann_file, _, pipelines, modality = \
        _generate_sunrgbd_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
liyinhao's avatar
liyinhao committed
185
186
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
187
188
189
190
191
192
193
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor(
            [[1.0473, 4.1687, -1.2317, 2.3021, 1.8876, 1.9696, 1.6956],
             [2.5831, 4.8117, -1.2733, 0.5852, 0.8832, 0.9733, 1.6500],
             [-1.0864, 1.9045, -1.2000, 0.7128, 1.5631, 2.1045, 0.1022]]))
    pred_boxes['labels_3d'] = torch.tensor([0, 7, 6])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0])
liyinhao's avatar
liyinhao committed
194
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
195
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
196
    ap_dict = sunrgbd_dataset.evaluate(results, metric)
liyinhao's avatar
liyinhao committed
197
198
199
    bed_precision_25 = ap_dict['bed_AP_0.25']
    dresser_precision_25 = ap_dict['dresser_AP_0.25']
    night_stand_precision_25 = ap_dict['night_stand_AP_0.25']
liyinhao's avatar
liyinhao committed
200
201
202
    assert abs(bed_precision_25 - 1) < 0.01
    assert abs(dresser_precision_25 - 1) < 0.01
    assert abs(night_stand_precision_25 - 1) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
203
204
205
206
207
208
209
210


def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
211
212
213
214
215
216
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path, ann_file, _, pipelines, modality = \
        _generate_sunrgbd_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, pipelines, modality=modality)
yinchimaoliang's avatar
yinchimaoliang committed
217
218
219
220
221
222
223
224
225
226
227
228
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[1.1500, 4.2614, -1.0669, 1.3219, 2.1593, 1.0267, 1.6473],
             [-0.9583, 2.1916, -1.0881, 0.6213, 1.3022, 1.6275, -3.0720],
             [2.5697, 4.8152, -1.1157, 0.5421, 0.7019, 0.7896, 1.6712],
             [0.7283, 2.5448, -1.0356, 0.7691, 0.9056, 0.5771, 1.7121],
             [-0.9860, 3.2413, -1.2349, 0.5110, 0.9940, 1.1245, 0.3295]]))
    scores_3d = torch.tensor(
        [1.5280e-01, 1.6682e-03, 6.2811e-04, 1.2860e-03, 9.4229e-06])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
229
    sunrgbd_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
230
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
231
232
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
233
234
235
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    tmp_dir.cleanup()

    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path, ann_file, _, multi_modality_pipelines, modality = \
        _generate_sunrgbd_multi_modality_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(
        root_path, ann_file, multi_modality_pipelines, modality=modality)
    sunrgbd_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    img_file_path = osp.join(temp_dir, '000001', '000001_img.png')
    img_pred_path = osp.join(temp_dir, '000001', '000001_pred.png')
    img_gt_file = osp.join(temp_dir, '000001', '000001_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()