nerfdet_head.py 26.9 KB
Newer Older
YirongYan's avatar
YirongYan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

import torch
from mmcv.cnn import Scale
# from mmcv.ops import nms3d, nms3d_normal
from mmdet.models.utils import multi_apply
from mmdet.utils import reduce_mean
# from mmengine.config import ConfigDict
from mmengine.model import BaseModule, bias_init_with_prob, normal_init
from mmengine.structures import InstanceData
from torch import Tensor, nn

from mmdet3d.registry import MODELS, TASK_UTILS
# from mmdet3d.structures.bbox_3d.utils import rotation_3d_in_axis
from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet3d.utils.typing_utils import (ConfigType, InstanceList,
                                        OptConfigType, OptInstanceList)


@torch.no_grad()
def get_points(n_voxels, voxel_size, origin):
    # origin: point-cloud center.
    points = torch.stack(
        torch.meshgrid([
            torch.arange(n_voxels[0]),  # 40 W width, x
            torch.arange(n_voxels[1]),  # 40 D depth, y
            torch.arange(n_voxels[2])  # 16 H Height, z
        ]))
    new_origin = origin - n_voxels / 2. * voxel_size
    points = points * voxel_size.view(3, 1, 1, 1) + new_origin.view(3, 1, 1, 1)
    return points


@MODELS.register_module()
class NerfDetHead(BaseModule):
    r"""`ImVoxelNet<https://arxiv.org/abs/2106.01178>`_ head for indoor
    datasets.

    Args:
        n_classes (int): Number of classes.
        n_levels (int): Number of feature levels.
        n_channels (int): Number of channels in input tensors.
        n_reg_outs (int): Number of regression layer channels.
        pts_assign_threshold (int): Min number of location per box to
            be assigned with.
        pts_center_threshold (int): Max number of locations per box to
            be assigned with.
        center_loss (dict, optional): Config of centerness loss.
            Default: dict(type='CrossEntropyLoss', use_sigmoid=True).
        bbox_loss (dict, optional): Config of bbox loss.
            Default: dict(type='RotatedIoU3DLoss').
        cls_loss (dict, optional): Config of classification loss.
            Default: dict(type='FocalLoss').
        train_cfg (dict, optional): Config for train stage. Defaults to None.
        test_cfg (dict, optional): Config for test stage. Defaults to None.
        init_cfg (dict, optional): Config for weight initialization.
            Defaults to None.
    """

    def __init__(self,
                 n_classes: int,
                 n_levels: int,
                 n_channels: int,
                 n_reg_outs: int,
                 pts_assign_threshold: int,
                 pts_center_threshold: int,
                 prior_generator: ConfigType,
                 center_loss: ConfigType = dict(
                     type='mmdet.CrossEntropyLoss', use_sigmoid=True),
                 bbox_loss: ConfigType = dict(type='RotatedIoU3DLoss'),
                 cls_loss: ConfigType = dict(type='mmdet.FocalLoss'),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptConfigType = None):
        super(NerfDetHead, self).__init__(init_cfg)
        self.n_classes = n_classes
        self.n_levels = n_levels
        self.n_reg_outs = n_reg_outs
        self.pts_assign_threshold = pts_assign_threshold
        self.pts_center_threshold = pts_center_threshold
        self.prior_generator = TASK_UTILS.build(prior_generator)
        self.center_loss = MODELS.build(center_loss)
        self.bbox_loss = MODELS.build(bbox_loss)
        self.cls_loss = MODELS.build(cls_loss)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self._init_layers(n_channels, n_reg_outs, n_classes, n_levels)

    def _init_layers(self, n_channels, n_reg_outs, n_classes, n_levels):
        """Initialize neural network layers of the head."""
        self.conv_center = nn.Conv3d(n_channels, 1, 3, padding=1, bias=False)
        self.conv_reg = nn.Conv3d(
            n_channels, n_reg_outs, 3, padding=1, bias=False)
        self.conv_cls = nn.Conv3d(n_channels, n_classes, 3, padding=1)
        self.scales = nn.ModuleList([Scale(1.) for _ in range(n_levels)])

    def init_weights(self):
        """Initialize all layer weights."""
        normal_init(self.conv_center, std=.01)
        normal_init(self.conv_reg, std=.01)
        normal_init(self.conv_cls, std=.01, bias=bias_init_with_prob(.01))

    def _forward_single(self, x: Tensor, scale: Scale):
        """Forward pass per level.

        Args:
            x (Tensor): Per level 3d neck output tensor.
            scale (mmcv.cnn.Scale): Per level multiplication weight.

        Returns:
            tuple[Tensor]: Centerness, bbox and classification predictions.
        """
        return (self.conv_center(x), torch.exp(scale(self.conv_reg(x))),
                self.conv_cls(x))

    def forward(self, x):
        return multi_apply(self._forward_single, x, self.scales)

    def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList,
             **kwargs) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            batch_data_samples (List[:obj:`NeRFDet3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        valid_pred = x[-1]
        outs = self(x[:-1])

        batch_gt_instances_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instances_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))

        loss_inputs = outs + (valid_pred, batch_gt_instances_3d,
                              batch_input_metas, batch_gt_instances_ignore)
        losses = self.loss_by_feat(*loss_inputs)
        return losses

    def loss_by_feat(self,
                     center_preds: List[List[Tensor]],
                     bbox_preds: List[List[Tensor]],
                     cls_preds: List[List[Tensor]],
                     valid_pred: Tensor,
                     batch_gt_instances_3d: InstanceList,
                     batch_input_metas: List[dict],
                     batch_gt_instances_ignore: OptInstanceList = None,
                     **kwargs) -> dict:
        """Per scene loss function.

        Args:
            center_preds (list[list[Tensor]]): Centerness predictions for
                all scenes. The first list contains predictions from different
                levels. The second list contains predictions in a mini-batch.
            bbox_preds (list[list[Tensor]]): Bbox predictions for all scenes.
                The first list contains predictions from different
                levels. The second list contains predictions in a mini-batch.
            cls_preds (list[list[Tensor]]): Classification predictions for all
                scenes. The first list contains predictions from different
                levels. The second list contains predictions in a mini-batch.
            valid_pred (Tensor): Valid mask prediction for all scenes.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance_3d.  It usually includes ``bboxes_3d``、`
                `labels_3d``、``depths``、``centers_2d`` and attributes.
            batch_input_metas (list[dict]): Meta information of each image,
                e.g., image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict: Centerness, bbox, and classification loss values.
        """
        valid_preds = self._upsample_valid_preds(valid_pred, center_preds)
        center_losses, bbox_losses, cls_losses = [], [], []
        for i in range(len(batch_input_metas)):
            center_loss, bbox_loss, cls_loss = self._loss_by_feat_single(
                center_preds=[x[i] for x in center_preds],
                bbox_preds=[x[i] for x in bbox_preds],
                cls_preds=[x[i] for x in cls_preds],
                valid_preds=[x[i] for x in valid_preds],
                input_meta=batch_input_metas[i],
                gt_bboxes=batch_gt_instances_3d[i].bboxes_3d,
                gt_labels=batch_gt_instances_3d[i].labels_3d)
            center_losses.append(center_loss)
            bbox_losses.append(bbox_loss)
            cls_losses.append(cls_loss)
        return dict(
            center_loss=torch.mean(torch.stack(center_losses)),
            bbox_loss=torch.mean(torch.stack(bbox_losses)),
            cls_loss=torch.mean(torch.stack(cls_losses)))

    def _loss_by_feat_single(self, center_preds, bbox_preds, cls_preds,
                             valid_preds, input_meta, gt_bboxes, gt_labels):
        featmap_sizes = [featmap.size()[-3:] for featmap in center_preds]
        points = self._get_points(
            featmap_sizes=featmap_sizes,
            origin=input_meta['lidar2img']['origin'],
            device=gt_bboxes.device)
        center_targets, bbox_targets, cls_targets = self._get_targets(
            points, gt_bboxes, gt_labels)

        center_preds = torch.cat(
            [x.permute(1, 2, 3, 0).reshape(-1) for x in center_preds])
        bbox_preds = torch.cat([
            x.permute(1, 2, 3, 0).reshape(-1, x.shape[0]) for x in bbox_preds
        ])
        cls_preds = torch.cat(
            [x.permute(1, 2, 3, 0).reshape(-1, x.shape[0]) for x in cls_preds])
        valid_preds = torch.cat(
            [x.permute(1, 2, 3, 0).reshape(-1) for x in valid_preds])
        points = torch.cat(points)

        # cls loss
        pos_inds = torch.nonzero(
            torch.logical_and(cls_targets >= 0, valid_preds)).squeeze(1)
        n_pos = points.new_tensor(len(pos_inds))
        n_pos = max(reduce_mean(n_pos), 1.)
        if torch.any(valid_preds):
            cls_loss = self.cls_loss(
                cls_preds[valid_preds],
                cls_targets[valid_preds],
                avg_factor=n_pos)
        else:
            cls_loss = cls_preds[valid_preds].sum()

        # bbox and centerness losses
        pos_center_preds = center_preds[pos_inds]
        pos_bbox_preds = bbox_preds[pos_inds]
        if len(pos_inds) > 0:
            pos_center_targets = center_targets[pos_inds]
            pos_bbox_targets = bbox_targets[pos_inds]
            pos_points = points[pos_inds]
            center_loss = self.center_loss(
                pos_center_preds, pos_center_targets, avg_factor=n_pos)
            bbox_loss = self.bbox_loss(
                self._bbox_pred_to_bbox(pos_points, pos_bbox_preds),
                pos_bbox_targets,
                weight=pos_center_targets,
                avg_factor=pos_center_targets.sum())
        else:
            center_loss = pos_center_preds.sum()
            bbox_loss = pos_bbox_preds.sum()
        return center_loss, bbox_loss, cls_loss

    def predict(self,
                x: Tuple[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the 3D detection head and predict
        detection results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`NeRFDet3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, `gt_pts_panoptic_seg` and
                `gt_pts_sem_seg`.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each sample
            after the post process.
            Each item usually contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
              contains a tensor with shape (num_instances, C), where
              C >= 6.
        """
        batch_input_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        valid_pred = x[-1]
        outs = self(x[:-1])
        predictions = self.predict_by_feat(
            *outs,
            valid_pred=valid_pred,
            batch_input_metas=batch_input_metas,
            rescale=rescale)
        return predictions

    def predict_by_feat(self, center_preds: List[List[Tensor]],
                        bbox_preds: List[List[Tensor]],
                        cls_preds: List[List[Tensor]], valid_pred: Tensor,
                        batch_input_metas: List[dict],
                        **kwargs) -> List[InstanceData]:
        """Generate boxes for all scenes.

        Args:
            center_preds (list[list[Tensor]]): Centerness predictions for
                all scenes.
            bbox_preds (list[list[Tensor]]): Bbox predictions for all scenes.
            cls_preds (list[list[Tensor]]): Classification predictions for all
                scenes.
            valid_pred (Tensor): Valid mask prediction for all scenes.
            batch_input_metas (list[dict]): Meta infos for all scenes.

        Returns:
            list[tuple[Tensor]]: Predicted bboxes, scores, and labels for
                all scenes.
        """
        valid_preds = self._upsample_valid_preds(valid_pred, center_preds)
        results = []
        for i in range(len(batch_input_metas)):
            results.append(
                self._predict_by_feat_single(
                    center_preds=[x[i] for x in center_preds],
                    bbox_preds=[x[i] for x in bbox_preds],
                    cls_preds=[x[i] for x in cls_preds],
                    valid_preds=[x[i] for x in valid_preds],
                    input_meta=batch_input_metas[i]))
        return results

    def _predict_by_feat_single(self, center_preds: List[Tensor],
                                bbox_preds: List[Tensor],
                                cls_preds: List[Tensor],
                                valid_preds: List[Tensor],
                                input_meta: dict) -> InstanceData:
        """Generate boxes for single sample.

        Args:
            center_preds (list[Tensor]): Centerness predictions for all levels.
            bbox_preds (list[Tensor]): Bbox predictions for all levels.
            cls_preds (list[Tensor]): Classification predictions for all
                levels.
            valid_preds (tuple[Tensor]): Upsampled valid masks for all feature
                levels.
            input_meta (dict): Scene meta info.

        Returns:
            tuple[Tensor]: Predicted bounding boxes, scores and labels.
        """
        featmap_sizes = [featmap.size()[-3:] for featmap in center_preds]
        points = self._get_points(
            featmap_sizes=featmap_sizes,
            origin=input_meta['lidar2img']['origin'],
            device=center_preds[0].device)
        mlvl_bboxes, mlvl_scores = [], []
        for center_pred, bbox_pred, cls_pred, valid_pred, point in zip(
                center_preds, bbox_preds, cls_preds, valid_preds, points):
            center_pred = center_pred.permute(1, 2, 3, 0).reshape(-1, 1)
            bbox_pred = bbox_pred.permute(1, 2, 3,
                                          0).reshape(-1, bbox_pred.shape[0])
            cls_pred = cls_pred.permute(1, 2, 3,
                                        0).reshape(-1, cls_pred.shape[0])
            valid_pred = valid_pred.permute(1, 2, 3, 0).reshape(-1, 1)
            scores = cls_pred.sigmoid() * center_pred.sigmoid() * valid_pred
            max_scores, _ = scores.max(dim=1)

            if len(scores) > self.test_cfg.nms_pre > 0:
                _, ids = max_scores.topk(self.test_cfg.nms_pre)
                bbox_pred = bbox_pred[ids]
                scores = scores[ids]
                point = point[ids]

            bboxes = self._bbox_pred_to_bbox(point, bbox_pred)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)

        bboxes = torch.cat(mlvl_bboxes)
        scores = torch.cat(mlvl_scores)
        bboxes, scores, labels = self._nms(bboxes, scores, input_meta)

        bboxes = input_meta['box_type_3d'](
            bboxes, box_dim=6, with_yaw=False, origin=(.5, .5, .5))

        results = InstanceData()
        results.bboxes_3d = bboxes
        results.scores_3d = scores
        results.labels_3d = labels
        return results

    @staticmethod
    def _upsample_valid_preds(valid_pred, features):
        """Upsample valid mask predictions.

        Args:
            valid_pred (Tensor): Valid mask prediction.
            features (Tensor): Feature tensor.

        Returns:
            tuple[Tensor]: Upsampled valid masks for all feature levels.
        """
        return [
            nn.Upsample(size=x.shape[-3:],
                        mode='trilinear')(valid_pred).round().bool()
            for x in features
        ]

    @torch.no_grad()
    def _get_points(self, featmap_sizes, origin, device):
        mlvl_points = []
        tmp_voxel_size = [.16, .16, .2]
        for i, featmap_size in enumerate(featmap_sizes):
            mlvl_points.append(
                get_points(
                    n_voxels=torch.tensor(featmap_size),
                    voxel_size=torch.tensor(tmp_voxel_size) * (2**i),
                    origin=torch.tensor(origin)).reshape(3, -1).transpose(
                        0, 1).to(device))
        return mlvl_points

    def _bbox_pred_to_bbox(self, points, bbox_pred):
        return torch.stack([
            points[:, 0] - bbox_pred[:, 0], points[:, 1] - bbox_pred[:, 2],
            points[:, 2] - bbox_pred[:, 4], points[:, 0] + bbox_pred[:, 1],
            points[:, 1] + bbox_pred[:, 3], points[:, 2] + bbox_pred[:, 5]
        ], -1)

    def _bbox_pred_to_loss(self, points, bbox_preds):
        return self._bbox_pred_to_bbox(points, bbox_preds)

    # The function is directly copied from FCAF3DHead.
    @staticmethod
    def _get_face_distances(points, boxes):
        """Calculate distances from point to box faces.

        Args:
            points (Tensor): Final locations of shape (N_points, N_boxes, 3).
            boxes (Tensor): 3D boxes of shape (N_points, N_boxes, 7)

        Returns:
            Tensor: Face distances of shape (N_points, N_boxes, 6),
                (dx_min, dx_max, dy_min, dy_max, dz_min, dz_max).
        """
        dx_min = points[..., 0] - boxes[..., 0] + boxes[..., 3] / 2
        dx_max = boxes[..., 0] + boxes[..., 3] / 2 - points[..., 0]
        dy_min = points[..., 1] - boxes[..., 1] + boxes[..., 4] / 2
        dy_max = boxes[..., 1] + boxes[..., 4] / 2 - points[..., 1]
        dz_min = points[..., 2] - boxes[..., 2] + boxes[..., 5] / 2
        dz_max = boxes[..., 2] + boxes[..., 5] / 2 - points[..., 2]
        return torch.stack((dx_min, dx_max, dy_min, dy_max, dz_min, dz_max),
                           dim=-1)

    @staticmethod
    def _get_centerness(face_distances):
        """Compute point centerness w.r.t containing box.

        Args:
            face_distances (Tensor): Face distances of shape (B, N, 6),
                (dx_min, dx_max, dy_min, dy_max, dz_min, dz_max).

        Returns:
            Tensor: Centerness of shape (B, N).
        """
        x_dims = face_distances[..., [0, 1]]
        y_dims = face_distances[..., [2, 3]]
        z_dims = face_distances[..., [4, 5]]
        centerness_targets = x_dims.min(dim=-1)[0] / x_dims.max(dim=-1)[0] * \
            y_dims.min(dim=-1)[0] / y_dims.max(dim=-1)[0] * \
            z_dims.min(dim=-1)[0] / z_dims.max(dim=-1)[0]
        return torch.sqrt(centerness_targets)

    @torch.no_grad()
    def _get_targets(self, points, gt_bboxes, gt_labels):
        """Compute targets for final locations for a single scene.

        Args:
            points (list[Tensor]): Final locations for all levels.
            gt_bboxes (BaseInstance3DBoxes): Ground truth boxes.
            gt_labels (Tensor): Ground truth labels.

        Returns:
            tuple[Tensor]: Centerness, bbox and classification
                targets for all locations.
        """
        float_max = 1e8
        expanded_scales = [
            points[i].new_tensor(i).expand(len(points[i])).to(gt_labels.device)
            for i in range(len(points))
        ]
        points = torch.cat(points, dim=0).to(gt_labels.device)
        scales = torch.cat(expanded_scales, dim=0)

        # below is based on FCOSHead._get_target_single
        n_points = len(points)
        n_boxes = len(gt_bboxes)
        volumes = gt_bboxes.volume.to(points.device)
        volumes = volumes.expand(n_points, n_boxes).contiguous()
        gt_bboxes = torch.cat(
            (gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:6]), dim=1)
        gt_bboxes = gt_bboxes.to(points.device).expand(n_points, n_boxes, 6)
        expanded_points = points.unsqueeze(1).expand(n_points, n_boxes, 3)
        bbox_targets = self._get_face_distances(expanded_points, gt_bboxes)

        # condition1: inside a gt bbox
        inside_gt_bbox_mask = bbox_targets[..., :6].min(
            -1)[0] > 0  # skip angle

        # condition2: positive points per scale >= limit
        # calculate positive points per scale
        n_pos_points_per_scale = []
        for i in range(self.n_levels):
            n_pos_points_per_scale.append(
                torch.sum(inside_gt_bbox_mask[scales == i], dim=0))
        # find best scale
        n_pos_points_per_scale = torch.stack(n_pos_points_per_scale, dim=0)
        lower_limit_mask = n_pos_points_per_scale < self.pts_assign_threshold
        # fix nondeterministic argmax for torch<1.7
        extra = torch.arange(self.n_levels, 0, -1).unsqueeze(1).expand(
            self.n_levels, n_boxes).to(lower_limit_mask.device)
        lower_index = torch.argmax(lower_limit_mask.int() * extra, dim=0) - 1
        lower_index = torch.where(lower_index < 0,
                                  torch.zeros_like(lower_index), lower_index)
        all_upper_limit_mask = torch.all(
            torch.logical_not(lower_limit_mask), dim=0)
        best_scale = torch.where(
            all_upper_limit_mask,
            torch.ones_like(all_upper_limit_mask) * self.n_levels - 1,
            lower_index)
        # keep only points with best scale
        best_scale = torch.unsqueeze(best_scale, 0).expand(n_points, n_boxes)
        scales = torch.unsqueeze(scales, 1).expand(n_points, n_boxes)
        inside_best_scale_mask = best_scale == scales

        # condition3: limit topk locations per box by centerness
        centerness = self._get_centerness(bbox_targets)
        centerness = torch.where(inside_gt_bbox_mask, centerness,
                                 torch.ones_like(centerness) * -1)
        centerness = torch.where(inside_best_scale_mask, centerness,
                                 torch.ones_like(centerness) * -1)
        top_centerness = torch.topk(
            centerness, self.pts_center_threshold + 1, dim=0).values[-1]
        inside_top_centerness_mask = centerness > top_centerness.unsqueeze(0)

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        volumes = torch.where(inside_gt_bbox_mask, volumes,
                              torch.ones_like(volumes) * float_max)
        volumes = torch.where(inside_best_scale_mask, volumes,
                              torch.ones_like(volumes) * float_max)
        volumes = torch.where(inside_top_centerness_mask, volumes,
                              torch.ones_like(volumes) * float_max)
        min_area, min_area_inds = volumes.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels = torch.where(min_area == float_max,
                             torch.ones_like(labels) * -1, labels)
        bbox_targets = bbox_targets[range(n_points), min_area_inds]
        centerness_targets = self._get_centerness(bbox_targets)

        return centerness_targets, self._bbox_pred_to_bbox(
            points, bbox_targets), labels

    def _nms(self, bboxes, scores, img_meta):
        scores, labels = scores.max(dim=1)
        ids = scores > self.test_cfg.score_thr
        bboxes = bboxes[ids]
        scores = scores[ids]
        labels = labels[ids]
        ids = self.aligned_3d_nms(bboxes, scores, labels,
                                  self.test_cfg.iou_thr)
        bboxes = bboxes[ids]
        bboxes = torch.stack(
            ((bboxes[:, 0] + bboxes[:, 3]) / 2.,
             (bboxes[:, 1] + bboxes[:, 4]) / 2.,
             (bboxes[:, 2] + bboxes[:, 5]) / 2., bboxes[:, 3] - bboxes[:, 0],
             bboxes[:, 4] - bboxes[:, 1], bboxes[:, 5] - bboxes[:, 2]),
            dim=1)
        return bboxes, scores[ids], labels[ids]

    @staticmethod
    def aligned_3d_nms(boxes, scores, classes, thresh):
        """3d nms for aligned boxes.

        Args:
            boxes (torch.Tensor): Aligned box with shape [n, 6].
            scores (torch.Tensor): Scores of each box.
            classes (torch.Tensor): Class of each box.
            thresh (float): Iou threshold for nms.

        Returns:
            torch.Tensor: Indices of selected boxes.
        """
        x1 = boxes[:, 0]
        y1 = boxes[:, 1]
        z1 = boxes[:, 2]
        x2 = boxes[:, 3]
        y2 = boxes[:, 4]
        z2 = boxes[:, 5]
        area = (x2 - x1) * (y2 - y1) * (z2 - z1)
        zero = boxes.new_zeros(1, )

        score_sorted = torch.argsort(scores)
        pick = []
        while (score_sorted.shape[0] != 0):
            last = score_sorted.shape[0]
            i = score_sorted[-1]
            pick.append(i)

            xx1 = torch.max(x1[i], x1[score_sorted[:last - 1]])
            yy1 = torch.max(y1[i], y1[score_sorted[:last - 1]])
            zz1 = torch.max(z1[i], z1[score_sorted[:last - 1]])
            xx2 = torch.min(x2[i], x2[score_sorted[:last - 1]])
            yy2 = torch.min(y2[i], y2[score_sorted[:last - 1]])
            zz2 = torch.min(z2[i], z2[score_sorted[:last - 1]])
            classes1 = classes[i]
            classes2 = classes[score_sorted[:last - 1]]
            inter_l = torch.max(zero, xx2 - xx1)
            inter_w = torch.max(zero, yy2 - yy1)
            inter_h = torch.max(zero, zz2 - zz1)

            inter = inter_l * inter_w * inter_h
            iou = inter / (area[i] + area[score_sorted[:last - 1]] - inter)
            iou = iou * (classes1 == classes2).float()
            score_sorted = score_sorted[torch.nonzero(
                iou <= thresh, as_tuple=False).flatten()]

        indices = boxes.new_tensor(pick, dtype=torch.long)
        return indices