"lightx2v_platform/ops/mm/template.py" did not exist on "31da6925fb8b5846f751f8c05be9ef28e59ab617"
sunrgbd_3d.py 4.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset.dataset_wrapper import RepeatDataset
from mmengine.dataset.sampler import DefaultSampler
from mmengine.visualization.vis_backend import LocalVisBackend

from mmdet3d.datasets.sunrgbd_dataset import SUNRGBDDataset
from mmdet3d.datasets.transforms.formating import Pack3DDetInputs
from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D,
                                                 LoadPointsFromFile)
from mmdet3d.datasets.transforms.test_time_aug import MultiScaleFlipAug3D
from mmdet3d.datasets.transforms.transforms_3d import (GlobalRotScaleTrans,
                                                       PointSample,
                                                       RandomFlip3D)
from mmdet3d.evaluation.metrics.indoor_metric import IndoorMetric
from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer

dataset_type = 'SUNRGBDDataset'
data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

metainfo = dict(classes=class_names)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/sunrgbd/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None

train_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2],
        backend_args=backend_args),
    dict(type=LoadAnnotations3D),
    dict(
        type=RandomFlip3D,
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type=GlobalRotScaleTrans,
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(type=PointSample, num_points=20000),
    dict(
        type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2],
        backend_args=backend_args),
    dict(
        type=MultiScaleFlipAug3D,
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type=GlobalRotScaleTrans,
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(
                type=RandomFlip3D,
                sync_2d=False,
                flip_ratio_bev_horizontal=0.5,
            ),
            dict(type=PointSample, num_points=20000)
        ]),
    dict(type=Pack3DDetInputs, keys=['points'])
]

train_dataloader = dict(
    batch_size=16,
    num_workers=4,
    sampler=dict(type=DefaultSampler, shuffle=True),
    dataset=dict(
        type=RepeatDataset,
        times=5,
        dataset=dict(
            type=SUNRGBDDataset,
            data_root=data_root,
            ann_file='sunrgbd_infos_train.pkl',
            pipeline=train_pipeline,
            filter_empty_gt=False,
            metainfo=metainfo,
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
            box_type_3d='Depth',
            backend_args=backend_args)))

val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=SUNRGBDDataset,
        data_root=data_root,
        ann_file='sunrgbd_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        test_mode=True,
        box_type_3d='Depth',
        backend_args=backend_args))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=SUNRGBDDataset,
        data_root=data_root,
        ann_file='sunrgbd_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        test_mode=True,
        box_type_3d='Depth',
        backend_args=backend_args))
val_evaluator = dict(type=IndoorMetric)
test_evaluator = val_evaluator

vis_backends = [dict(type=LocalVisBackend)]
visualizer = dict(
    type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')