# Copyright (c) OpenMMLab. All rights reserved. from mmengine.dataset.dataset_wrapper import RepeatDataset from mmengine.dataset.sampler import DefaultSampler from mmengine.visualization.vis_backend import LocalVisBackend from mmdet3d.datasets.sunrgbd_dataset import SUNRGBDDataset from mmdet3d.datasets.transforms.formating import Pack3DDetInputs from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D, LoadPointsFromFile) from mmdet3d.datasets.transforms.test_time_aug import MultiScaleFlipAug3D from mmdet3d.datasets.transforms.transforms_3d import (GlobalRotScaleTrans, PointSample, RandomFlip3D) from mmdet3d.evaluation.metrics.indoor_metric import IndoorMetric from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer dataset_type = 'SUNRGBDDataset' data_root = 'data/sunrgbd/' class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub') metainfo = dict(classes=class_names) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/sunrgbd/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict( type=LoadPointsFromFile, coord_type='DEPTH', shift_height=True, load_dim=6, use_dim=[0, 1, 2], backend_args=backend_args), dict(type=LoadAnnotations3D), dict( type=RandomFlip3D, sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict( type=GlobalRotScaleTrans, rot_range=[-0.523599, 0.523599], scale_ratio_range=[0.85, 1.15], shift_height=True), dict(type=PointSample, num_points=20000), dict( type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type=LoadPointsFromFile, coord_type='DEPTH', shift_height=True, load_dim=6, use_dim=[0, 1, 2], backend_args=backend_args), dict( type=MultiScaleFlipAug3D, img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type=GlobalRotScaleTrans, rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type=RandomFlip3D, sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict(type=PointSample, num_points=20000) ]), dict(type=Pack3DDetInputs, keys=['points']) ] train_dataloader = dict( batch_size=16, num_workers=4, sampler=dict(type=DefaultSampler, shuffle=True), dataset=dict( type=RepeatDataset, times=5, dataset=dict( type=SUNRGBDDataset, data_root=data_root, ann_file='sunrgbd_infos_train.pkl', pipeline=train_pipeline, filter_empty_gt=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Depth', backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=SUNRGBDDataset, data_root=data_root, ann_file='sunrgbd_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=SUNRGBDDataset, data_root=data_root, ann_file='sunrgbd_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) val_evaluator = dict(type=IndoorMetric) test_evaluator = val_evaluator vis_backends = [dict(type=LocalVisBackend)] visualizer = dict( type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')