detr3d_vovnet_gridmask_trainval_cbgs.py 1.47 KB
Newer Older
1
2
_base_ = ['./detr3d_r101_gridmask_cbgs.py']

3
custom_imports = dict(imports=['projects.DETR3D.detr3d'])
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

img_norm_cfg = dict(
    mean=[103.530, 116.280, 123.675],
    std=[57.375, 57.120, 58.395],
    bgr_to_rgb=False)

# this means type='DETR3D' will be processed as 'mmdet3d.DETR3D'
default_scope = 'mmdet3d'
model = dict(
    type='DETR3D',
    use_grid_mask=True,
    data_preprocessor=dict(
        type='Det3DDataPreprocessor', **img_norm_cfg, pad_size_divisor=32),
    img_backbone=dict(
        _delete_=True,
        type='VoVNet',
        spec_name='V-99-eSE',
        norm_eval=True,
        frozen_stages=1,
        input_ch=3,
        out_features=['stage2', 'stage3', 'stage4', 'stage5']),
    img_neck=dict(
        type='mmdet.FPN',
        in_channels=[256, 512, 768, 1024],
        out_channels=256,
        start_level=0,
        add_extra_convs='on_output',
        num_outs=4,
        relu_before_extra_convs=True))

train_dataloader = dict(
    dataset=dict(
        type='CBGSDataset',
        dataset=dict(ann_file='nuscenes_infos_trainval.pkl')))
38
39
40
41
42
43
44
45

test_dataloader = dict(
    dataset=dict(
        data_root='data/nuscenes-test', ann_file='nuscenes_infos_test.pkl'))

test_evaluator = dict(
    type='NuScenesMetric',
    data_root='data/nuscenes-test',
46
    ann_file='data/nuscenes-test/nuscenes_infos_test.pkl',
47
48
49
50
    jsonfile_prefix='work_dirs/detr3d_vovnet_results_test',
    format_only=True,
    metric=[])

51
52
load_from = 'ckpts/dd3d_det_final.pth'
find_unused_parameters = True