_base_ = ['./detr3d_r101_gridmask_cbgs.py'] custom_imports = dict(imports=['projects.DETR3D.detr3d']) img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False) # this means type='DETR3D' will be processed as 'mmdet3d.DETR3D' default_scope = 'mmdet3d' model = dict( type='DETR3D', use_grid_mask=True, data_preprocessor=dict( type='Det3DDataPreprocessor', **img_norm_cfg, pad_size_divisor=32), img_backbone=dict( _delete_=True, type='VoVNet', spec_name='V-99-eSE', norm_eval=True, frozen_stages=1, input_ch=3, out_features=['stage2', 'stage3', 'stage4', 'stage5']), img_neck=dict( type='mmdet.FPN', in_channels=[256, 512, 768, 1024], out_channels=256, start_level=0, add_extra_convs='on_output', num_outs=4, relu_before_extra_convs=True)) train_dataloader = dict( dataset=dict( type='CBGSDataset', dataset=dict(ann_file='nuscenes_infos_trainval.pkl'))) test_dataloader = dict( dataset=dict( data_root='data/nuscenes-test', ann_file='nuscenes_infos_test.pkl')) test_evaluator = dict( type='NuScenesMetric', data_root='data/nuscenes-test', ann_file='data/nuscenes-test/nuscenes_infos_test.pkl', jsonfile_prefix='work_dirs/detr3d_vovnet_results_test', format_only=True, metric=[]) load_from = 'ckpts/dd3d_det_final.pth' find_unused_parameters = True