changelog.md 20 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
## Changelog

hjin2902's avatar
hjin2902 committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
### v0.15.0 (1/7/2021)

#### Compatibility

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to [#1120](https://github.com/open-mmlab/mmcv/pull/1120), for related issues, please refer to [#5343](https://github.com/open-mmlab/mmdetection/issues/5343).

#### Highlights

- Support [PAConv](https://arxiv.org/abs/2103.14635)
- Support monocular/multi-view 3D detector [ImVoxelNet](https://arxiv.org/abs/2106.01178) on KITTI
- Support Transformer-based 3D detection method [Group-Free-3D](https://arxiv.org/abs/2104.00678) on ScanNet
- Add documentation for tasks including LiDAR-based 3D detection, vision-only 3D detection and point-based 3D semantic segmentation
- Add dataset documents like ScanNet

#### New Features

- Support Group-Free-3D on ScanNet (#539)
- Support PAConv modules (#598, #599)
- Support ImVoxelNet on KITTI (#627, #654)

#### Improvements

- Add unit tests for pipeline functions `LoadImageFromFileMono3D`, `ObjectNameFilter` and `ObjectRangeFilter` (#615)
- Enhance [IndoorPatchPointSample](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py) (#617)
- Refactor model initialization methods based MMCV (#622)
- Add Chinese docs (#629)
- Add documentation for LiDAR-based 3D detection (#642)
- Unify intrinsic and extrinsic matrices for all datasets (#653)
- Add documentation for point-based 3D semantic segmentation (#663)
- Add documentation of ScanNet for 3D detection (#664)
- Refine docs for tutorials (#666)
- Add documentation for vision-only 3D detection (#669)
- Refine docs for Quick Run and Useful Tools (#686)


#### Bug Fixes

- Fix the bug of [BackgroundPointsFilter](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py) using the bottom center of ground truth (#609)
- Fix [LoadMultiViewImageFromFiles](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/loading.py) to unravel stacked multi-view images to list to be consistent with DefaultFormatBundle (#611)
- Fix the potential bug in [analyze_logs](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/analysis_tools/analyze_logs.py) when the training resumes from a checkpoint or is stopped before evaluation (#634)
- Fix test commands in docs and make some refinements (#635)
- Fix wrong config paths in unit tests (#641)


hjin2902's avatar
hjin2902 committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
### v0.14.0 (1/6/2021)

#### Highlights
- Support the point cloud segmentation method [PointNet++](https://arxiv.org/abs/1706.02413)

#### New Features

- Support PointNet++ (#479, #528, #532, #541)
- Support RandomJitterPoints transform for point cloud segmentation (#584)
- Support RandomDropPointsColor transform for point cloud segmentation (#585)

#### Improvements

- Move the point alignment of ScanNet from data pre-processing to pipeline (#439, #470)
- Add compatibility document to provide detailed descriptions of BC-breaking changes (#504)
- Add MMSegmentation installation requirement (#535)
- Support points rotation even without bounding box in GlobalRotScaleTrans for point cloud segmentaiton (#540)
- Support visualization of detection results and dataset browse for nuScenes Mono-3D dataset (#542, #582)
- Support faster implementation of KNN (#586)
- Support RegNetX models on Lyft dataset (#589)
hjin2902's avatar
hjin2902 committed
67
- Remove a useless parameter `label_weight` from segmentation datasets including `Custom3DSegDataset`, `ScanNetSegDataset` and `S3DISSegDataset` (#607)
hjin2902's avatar
hjin2902 committed
68
69
70
71
72
73
74
75
76

#### Bug Fixes
- Fix a corrupted lidar data file in Lyft dataset in [data_preparation](https://github.com/open-mmlab/mmdetection3d/tree/master/docs/data_preparation.md) (#546)
- Fix evaluation bugs in nuScenes and Lyft dataset (#549)
- Fix converting points between coordinates with specific transformation matrix in the [coord_3d_mode.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/coord_3d_mode.py) (#556)
- Support PointPillars models on Lyft dataset (#578)
- Fix the bug of demo with pre-trained VoteNet model on ScanNet (#600)


hjin2902's avatar
hjin2902 committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
### v0.13.0 (1/5/2021)

#### Highlights
- Support a monocular 3D detection method [FCOS3D](https://arxiv.org/abs/2104.10956)
- Support ScanNet and S3DIS semantic segmentation dataset
- Enhancement of visualization tools for dataset browsing and demos, including support of visualization for multi-modality data and point cloud segmentation.

#### New Features

- Support ScanNet semantic segmentation dataset (#390)
- Support monocular 3D detection on nuScenes (#392)
- Support multi-modality visualization (#405)
- Support nuimages visualization (#408)
- Support monocular 3D detection on KITTI (#415)
- Support online visualization of semantic segmentation results (#416)
- Support ScanNet test results submission to online benchmark (#418)
- Support S3DIS data pre-processing and dataset class (#433)
- Support FCOS3D (#436, #442, #482, #484)
- Support dataset browse for multiple types of datasets (#467)
- Adding paper-with-code (PWC) metafile for each model in the model zoo (#485)

#### Improvements

- Support dataset browsing for SUNRGBD, ScanNet or KITTI points and detection results (#367)
- Add the pipeline to load data using file client (#430)
- Support to customize the type of runner (#437)
- Make pipeline functions process points and masks simultaneously when sampling points (#444)
- Add waymo unit tests (#455)
- Split the visualization of projecting points onto image from that for only points (#480)
- Efficient implementation of PointSegClassMapping (#489)
- Use the new model registry from mmcv (#495)

#### Bug Fixes

- Fix Pytorch 1.8 Compilation issue in the [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) (#404)
- Fix [dynamic_scatter](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) errors triggered by empty point input (#417)
- Fix the bug of missing points caused by using break incorrectly in the voxelization (#423)
- Fix the missing `coord_type` in the waymo dataset [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/waymoD5-3d-3class.py) (#441)
- Fix errors in four unittest functions of [configs](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py), [test_detectors.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_detectors.py), [test_heads.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_heads/test_heads.py) (#453)
- Fix 3DSSD training errors and simplify configs (#462)
- Clamp 3D votes projections to image boundaries in ImVoteNet (#463)
- Update out-of-date names of pipelines in the [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py) of pointpillars benchmark (#474)
- Fix the lack of a placeholder when unpacking RPN targets in the [h3d_bbox_head.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py) (#508)
- Fix the incorrect value of `K` when creating pickle files for SUN RGB-D (#511)

twang's avatar
twang committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
### v0.12.0 (1/4/2021)

#### Highlights

- Support a new multi-modality method [ImVoteNet](https://arxiv.org/abs/2001.10692).
- Support pytorch 1.7 and 1.8
- Refactor the structure of tools and [train.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py)/[test.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py)

#### New Features

- Support LiDAR-based semantic segmentation metrics (#332)
- Support [ImVoteNet](https://arxiv.org/abs/2001.10692) (#352, #384)
- Support the KNN GPU operation (#360, #371)

#### Improvements

- Add FAQ for common problems in the documentation (#333)
- Refactor the structure of tools (#339)
- Refactor [train.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py) and [test.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py) (#343)
- Support demo on nuScenes (#353)
- Add 3DSSD checkpoints (#359)
- Update the Bibtex of CenterPoint (#368)
- Add citation format and reference to other OpenMMLab projects in the README (#374)
- Upgrade the mmcv version requirements (#376)
- Add numba and numpy version requirements in FAQ (#379)
- Avoid unnecessary for-loop execution of vfe layer creation (#389)
- Update SUNRGBD dataset documentation to stress the requirements for training ImVoteNet (#391)
- Modify vote head to support 3DSSD (#396)

hjin2902's avatar
hjin2902 committed
151
152
153
154
155
156
157
158
159
160
161
#### Bug Fixes

- Fix missing keys `coord_type` in database sampler config (#345)
- Rename H3DNet configs (#349)
- Fix CI by using ubuntu 18.04 in github workflow (#350)
- Add assertions to avoid 4-dim points being input to [points_in_boxes](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py) (#357)
- Fix the SECOND results on Waymo in the corresponding [README](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) (#363)
- Fix the incorrect adopted pipeline when adding val to workflow (#370)
- Fix a potential bug when indices used in the backwarding in ThreeNN (#377)
- Fix a compilation error triggered by [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) in pytorch 1.7 (#393)

twang's avatar
twang committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
### v0.11.0 (1/3/2021)

#### Highlights

- Support more friendly visualization interfaces based on open3d
- Support a faster and more memory-efficient implementation of DynamicScatter
- Refactor unit tests and details of configs

#### New Features

- Support new visualization methods based on open3d (#284, #323)

#### Improvements

- Refactor unit tests (#303)
- Move the key `train_cfg` and `test_cfg` into the model configs (#307)
178
- Update [README](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/) with [Chinese version](https://github.com/open-mmlab/mmdetection3d/blob/master/README_zh-CN.md/) and [instructions for getting started](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/). (#310, #316)
twang's avatar
twang committed
179
180
- Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)

hjin2902's avatar
hjin2902 committed
181
182
183
184
185
186
187
#### Bug Fixes

- Fix an unsupported bias setting in the unit test for centerpoint head (#304)
- Fix errors due to typos in the centerpoint head (#308)
- Fix a minor bug in [points_in_boxes.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py) when tensors are not in the same device. (#317)
- Fix warning of deprecated usages of nonzero during training with pytorch 1.6 (#330)

twang's avatar
twang committed
188
189
190
191
192
193
194
195
### v0.10.0 (1/2/2021)

#### Highlights

- Preliminary release of API for SemanticKITTI dataset.
- Documentation and demo enhancement for better user experience.
- Fix a number of underlying minor bugs and add some corresponding important unit tests.

hjin2902's avatar
hjin2902 committed
196
197
198
199
200
201
202
203
#### New Features

- Support SemanticKITTI dataset preliminarily (#287)

#### Improvements

- Add tag to README in configurations for specifying different uses (#262)
- Update instructions for evaluation metrics in the documentation (#265)
204
- Add nuImages entry in [README.md](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/) and gif demo (#266, #268)
hjin2902's avatar
hjin2902 committed
205
206
- Add unit test for voxelization (#275)

twang's avatar
twang committed
207
208
209
210
211
#### Bug Fixes

- Fixed the issue of unpacking size in [furthest_point_sample.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/furthest_point_sample/furthest_point_sample.py) (#248)
- Fix bugs for 3DSSD triggered by empty ground truths (#258)
- Remove models without checkpoints in model zoo statistics of documentation (#259)
212
- Fix some unclear installation instructions in [getting_started.md](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/) (#269)
twang's avatar
twang committed
213
214
215
216
217
218
- Fix relative paths/links in the documentation (#271)
- Fix a minor bug in [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) when num_features != 4 (#275)
- Fix the bug about missing text files when testing on KITTI (#278)
- Fix issues caused by inplace modification of tensors in `BaseInstance3DBoxes` (#283)
- Fix log analysis for evaluation and adjust the documentation accordingly (#285)

twang's avatar
twang committed
219
220
221
222
223
224
225
### v0.9.0 (31/12/2020)

#### Highlights

- Documentation refactoring with better structure, especially about how to implement new models and customized datasets.
- More compatible with refactored point structure by bug fixes in ground truth sampling.

hjin2902's avatar
hjin2902 committed
226
227
228
229
#### Improvements

- Documentation refactoring (#242)

twang's avatar
twang committed
230
231
232
233
234
235
236
237
238
#### Bug Fixes

- Fix point structure related bugs in ground truth sampling (#211)
- Fix loading points in ground truth sampling augmentation on nuScenes (#221)
- Fix channel setting in the SeparateHead of CenterPoint (#228)
- Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)
- Remove unreachable lines in nuScenes data converter (#235)
- Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)

twang's avatar
twang committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
### v0.8.0 (30/11/2020)

#### Highlights

- Refactor points structure with more constructive and clearer implementation.
- Support axis-aligned IoU loss for VoteNet with better performance.
- Update and enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo.

#### New Features

- Support axis-aligned IoU loss for VoteNet. (#194)
- Support points structure for consistent processing of all the point related representation. (#196, #204)

#### Improvements

254
- Enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo with stronger baselines. (#205)
twang's avatar
twang committed
255
256
- Add model zoo statistics and polish the documentation. (#201)

twang's avatar
twang committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
### v0.7.0 (1/11/2020)

#### Highlights

- Support a new method [SSN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700579.pdf) with benchmarks on nuScenes and Lyft datasets.
- Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.
- Support semantic segmentation on nuImages and provide [HTC](https://arxiv.org/abs/1901.07518) models with configurations and performance for reference.

#### New Features

- Modified primitive head which can support the setting on SUN-RGBD dataset (#136)
- Support semantic segmentation and [HTC](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages) with models for reference on nuImages dataset (#155)
- Support [SSN](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/ssn) on nuScenes and Lyft datasets (#147, #174, #166, #182)
- Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)

#### Improvements

- Update [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark with configurations for reference on Waymo (#166)
- Delete checkpoints on Waymo to comply its specific license agreement (#180)
- Update models and instructions with [mixed precision training](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fp16) on KITTI and nuScenes (#178)

hjin2902's avatar
hjin2902 committed
278
279
280
281
282
#### Bug Fixes

- Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)
- Fix the incorrect label mapping on nuImages dataset (#155)

twang's avatar
twang committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
### v0.6.1 (11/10/2020)

#### Highlights

- Support mixed precision training of voxel-based methods
- Support docker with pytorch 1.6.0
- Update baseline configs and results ([CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) on nuScenes and [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) on Waymo with full dataset)
- Switch model zoo to download.openmmlab.com

#### New Features

- Support dataset pipeline `VoxelBasedPointSampler` to sample multi-sweep points based on voxelization. (#125)
- Support mixed precision training of voxel-based methods (#132)
- Support docker with pytorch 1.6.0 (#160)

#### Improvements

- Reduce requirements for the case exclusive of Waymo (#121)
- Switch model zoo to download.openmmlab.com (#126)
- Update docs related to Waymo (#128)
- Add version assertion in the [init file](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/__init__.py) (#129)
- Add evaluation interval setting for CenterPoint (#131)
- Add unit test for CenterPoint (#133)
- Update [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) baselines on Waymo with full dataset (#142)
- Update [CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) results with models and logs (#154)

hjin2902's avatar
hjin2902 committed
309
310
311
312
313
314
315
316
317
318
319
#### Bug Fixes

- Fix a bug of visualization in multi-batch case (#120)
- Fix bugs in dcn unit test (#130)
- Fix dcn bias bug in centerpoint (#137)
- Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)
- Fix origin initialization in `CameraInstance3DBoxes` (#148, #150)
- Correct documentation link in the getting_started.md (#159)
- Fix model save path bug in gather_models.py (#153)
- Fix image padding shape bug in `PointFusion` (#162)

Wenwei Zhang's avatar
Wenwei Zhang committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
### v0.6.0 (20/9/2020)

#### Highlights

- Support new methods [H3DNet](https://arxiv.org/abs/2006.05682), [3DSSD](https://arxiv.org/abs/2002.10187), [CenterPoint](https://arxiv.org/abs/2006.11275).
- Support new dataset [Waymo](https://waymo.com/open/) (with PointPillars baselines) and [nuImages](https://www.nuscenes.org/nuimages) (with Mask R-CNN and Cascade Mask R-CNN baselines).
- Support Batch Inference
- Support Pytorch 1.6
- Start to publish `mmdet3d` package to PyPI since v0.5.0. You can use mmdet3d through `pip install mmdet3d`.

#### Backwards Incompatible Changes

- Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.
- Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use `collect_env` function in MMCV.
`get_compiler_version` and `get_compiling_cuda_version` compiled in `mmdet3d.ops.utils` are removed. Please import these two functions from `mmcv.ops`.

#### New Features

- Support [nuImages](https://www.nuscenes.org/nuimages) dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)
- Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)
- Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)
- Support [H3DNet](https://arxiv.org/abs/2006.05682) and release models on ScanNet dataset (#53, #58, #105)
- Support Fusion Point Sampling used in [3DSSD](https://arxiv.org/abs/2002.10187) (#66)
- Add `BackgroundPointsFilter` to filter background points in data pipeline (#84)
- Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)
- Support dilated ball query used in [3DSSD](https://arxiv.org/abs/2002.10187) (#96)
- Support [3DSSD](https://arxiv.org/abs/2002.10187) and release models on KITTI dataset (#83, #100, #104)
- Support [CenterPoint](https://arxiv.org/abs/2006.11275) and release models on nuScenes dataset (#49, #92)
- Support [Waymo](https://waymo.com/open/) dataset and release PointPillars baseline models (#118)
- Allow `LoadPointsFromMultiSweeps` to pad empty sweeps and select multiple sweeps randomly (#67)

#### Improvements

- Fix all warnings and bugs in Pytorch 1.6.0 (#70, #72)
- Update issue templates (#43)
- Update unit tests (#20, #24, #30)
- Update documentation for using `ply` format point cloud data (#41)
- Use points loader to load point cloud data in ground truth (GT) samplers (#87)
- Unify version file of OpenMMLab projects by using `version.py` (#112)
- Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)

hjin2902's avatar
hjin2902 committed
361
362
363
364
365
366
367
368
#### Bug Fixes

- Rename CosineAnealing to CosineAnnealing (#57)
- Fix device inconsistant bug in 3D IoU computation (#69)
- Fix a minor bug in json2csv of lyft dataset (#78)
- Add missed test data for pointnet modules (#85)
- Fix `use_valid_flag` bug in `CustomDataset` (#106)

369
### v0.5.0 (9/7/2020)
Wenwei Zhang's avatar
Wenwei Zhang committed
370

zhangwenwei's avatar
zhangwenwei committed
371
MMDetection3D is released.