norm.py 4.95 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import torch
3
from mmcv.cnn import NORM_LAYERS
4
from mmcv.runner import force_fp32
zhangwenwei's avatar
zhangwenwei committed
5
6
from torch import distributed as dist
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
7
from torch.autograd.function import Function
zhangwenwei's avatar
zhangwenwei committed
8

zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class AllReduce(Function):

    @staticmethod
    def forward(ctx, input):
        input_list = [
            torch.zeros_like(input) for k in range(dist.get_world_size())
        ]
        # Use allgather instead of allreduce in-place operations is unreliable
        dist.all_gather(input_list, input, async_op=False)
        inputs = torch.stack(input_list, dim=0)
        return torch.sum(inputs, dim=0)

    @staticmethod
    def backward(ctx, grad_output):
        dist.all_reduce(grad_output, async_op=False)
        return grad_output


28
@NORM_LAYERS.register_module('naiveSyncBN1d')
zhangwenwei's avatar
zhangwenwei committed
29
class NaiveSyncBatchNorm1d(nn.BatchNorm1d):
30
    """Synchronized Batch Normalization for 3D Tensors.
zhangwenwei's avatar
zhangwenwei committed
31
32
33
34
35
36
37
38
39
40

    Note:
        This implementation is modified from
        https://github.com/facebookresearch/detectron2/

        `torch.nn.SyncBatchNorm` has known unknown bugs.
        It produces significantly worse AP (and sometimes goes NaN)
        when the batch size on each worker is quite different
        (e.g., when scale augmentation is used).
        In 3D detection, different workers has points of different shapes,
41
        which also cause instability.
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45
46

        Use this implementation before `nn.SyncBatchNorm` is fixed.
        It is slower than `nn.SyncBatchNorm`.
    """

47
48
49
50
51
52
53
54
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.fp16_enabled = False

    # customized normalization layer still needs this decorator
    # to force the input to be fp32 and the output to be fp16
    # TODO: make mmcv fp16 utils handle customized norm layers
    @force_fp32(out_fp16=True)
zhangwenwei's avatar
zhangwenwei committed
55
    def forward(self, input):
56
57
        assert input.dtype == torch.float32, \
            f'input should be in float32 type, got {input.dtype}'
zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        if dist.get_world_size() == 1 or not self.training:
            return super().forward(input)
        assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2])
        meansqr = torch.mean(input * input, dim=[0, 2])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (
            mean.detach() - self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1)
        bias = bias.reshape(1, -1, 1)
        return input * scale + bias


82
@NORM_LAYERS.register_module('naiveSyncBN2d')
zhangwenwei's avatar
zhangwenwei committed
83
class NaiveSyncBatchNorm2d(nn.BatchNorm2d):
84
    """Synchronized Batch Normalization for 4D Tensors.
zhangwenwei's avatar
zhangwenwei committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    Note:
        This implementation is modified from
        https://github.com/facebookresearch/detectron2/

        `torch.nn.SyncBatchNorm` has known unknown bugs.
        It produces significantly worse AP (and sometimes goes NaN)
        when the batch size on each worker is quite different
        (e.g., when scale augmentation is used).
        This phenomenon also occurs when the multi-modality feature fusion
        modules of multi-modality detectors use SyncBN.

        Use this implementation before `nn.SyncBatchNorm` is fixed.
        It is slower than `nn.SyncBatchNorm`.
    """

101
102
103
104
105
106
107
108
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.fp16_enabled = False

    # customized normalization layer still needs this decorator
    # to force the input to be fp32 and the output to be fp16
    # TODO: make mmcv fp16 utils handle customized norm layers
    @force_fp32(out_fp16=True)
zhangwenwei's avatar
zhangwenwei committed
109
    def forward(self, input):
110
111
        assert input.dtype == torch.float32, \
            f'input should be in float32 type, got {input.dtype}'
zhangwenwei's avatar
zhangwenwei committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        if dist.get_world_size() == 1 or not self.training:
            return super().forward(input)

        assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (
            mean.detach() - self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)
        return input * scale + bias