transforms_3d.py 68.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
ZCMax's avatar
ZCMax committed
4
from typing import Dict, List, Optional, Tuple, Union
5
6
7

import cv2
import numpy as np
8
from mmcv.transforms import BaseTransform
9
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
10

zhangshilong's avatar
zhangshilong committed
11
from mmdet3d.models.task_modules import VoxelGenerator
12
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
13
14
15
16
17
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
from mmdet.datasets.transforms import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
18
19
20
from .data_augment_utils import noise_per_object_v3_


21
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
22
class RandomDropPointsColor(BaseTransform):
23
24
25
26
27
28
29
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
30
        drop_ratio (float, optional): The probability of dropping point colors.
31
32
33
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
34
    def __init__(self, drop_ratio: float = 0.2) -> None:
35
36
37
38
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
39
    def transform(self, input_dict: dict) -> dict:
40
41
42
43
44
45
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
46
            dict: Results after color dropping,
47
48
49
50
51
52
53
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

54
55
56
57
58
59
60
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
61
62
63
64
65
66
67
68
69
70
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


71
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
98
    Args:
zhangwenwei's avatar
zhangwenwei committed
99
100
101
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
102
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
103
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
104
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
105
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
106
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
107
108
    """

wuyuefeng's avatar
wuyuefeng committed
109
    def __init__(self,
jshilong's avatar
jshilong committed
110
111
112
113
114
115
116
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
117
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
118
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
119
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
120
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
121
122
123
124
125
126
127
128
129
130
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
131
132
133
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
134
135
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
136
137
138
139
140
141
142
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

143
144
        Args:
            input_dict (dict): Result dict from loading pipeline.
145
146
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
147
148

        Returns:
149
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
150
151
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
152
        assert direction in ['horizontal', 'vertical']
jshilong's avatar
jshilong committed
153
154

        if 'gt_bboxes_3d' in input_dict:
155
            if 'points' in input_dict:
jshilong's avatar
jshilong committed
156
                input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
157
158
                    direction, points=input_dict['points'])
            else:
jshilong's avatar
jshilong committed
159
160
161
162
163
164
                # vision-only detection
                input_dict['gt_bboxes_3d'].flip(direction)
        else:
            input_dict['points'].flip(direction)

        if 'centers_2d' in input_dict:
165
166
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
jshilong's avatar
jshilong committed
167
168
            # TODO fix this ori_shape and other keys in vision based model
            # TODO ori_shape to img_shape
169
            w = input_dict['ori_shape'][1]
jshilong's avatar
jshilong committed
170
171
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
172
173
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
174
            # ['cam2img'][0][2] = c_u
175
176
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
177
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
178

jshilong's avatar
jshilong committed
179
    def transform(self, input_dict: dict) -> dict:
180
        """Call function to flip points, values in the ``bbox3d_fields`` and
181
182
183
184
185
186
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
187
188
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
189
190
                into result dict.
        """
191
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
192
193
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
194

jshilong's avatar
jshilong committed
195
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
196
197
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
198
        else:
wuyuefeng's avatar
wuyuefeng committed
199
200
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
201
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
202
203
204
205
206
207
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

208
209
210
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
211
212
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
213
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
214
215
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
216
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
217
218
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
219
    def __repr__(self):
220
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
221
        repr_str = self.__class__.__name__
222
        repr_str += f'(sync_2d={self.sync_2d},'
223
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
224
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
225

zhangwenwei's avatar
zhangwenwei committed
226

227
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
228
class RandomJitterPoints(BaseTransform):
229
230
    """Randomly jitter point coordinates.

231
    Different from the global translation in ``GlobalRotScaleTrans``, here we
232
233
234
235
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
236
237
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
238
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
239
        clip_range (list[float]): Clip the randomly generated jitter
240
241
242
243
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
244
        This transform should only be used in point cloud segmentation tasks
245
246
247
248
249
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
250
251
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
266
    def transform(self, input_dict: dict) -> dict:
267
268
269
270
271
272
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
273
            dict: Results after adding noise to each point,
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


295
296
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
297
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
298

299
300
301
302
303
304
305
306
307
308
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
309

310
311
312
313
314
315
316
317
318
319
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
320
321
322
323
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
324
            Defaults to False.
325
        use_ground_plane (bool): Whether to use ground plane to adjust the
326
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
327
    """
zhangwenwei's avatar
zhangwenwei committed
328

329
330
331
332
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
                 use_ground_plane: bool = False):
zhangwenwei's avatar
zhangwenwei committed
333
334
335
336
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
337
        self.db_sampler = TRANSFORMS.build(db_sampler)
338
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
339
340

    @staticmethod
341
342
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
343
344
345
        """Remove the points in the sampled bounding boxes.

        Args:
346
            points (:obj:`BasePoints`): Input point cloud array.
347
348
349
350
351
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
352
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
353
354
355
        points = points[np.logical_not(masks.any(-1))]
        return points

356
357
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
358
359
360
361
362

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
363
364
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
365
366
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
367
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
368
369
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
370
371
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
372
373
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
374
375
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
376
377
378
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
379
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
380
381
382
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
383
384
385
386
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
387
388
        else:
            sampled_dict = self.db_sampler.sample_all(
389
390
391
392
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
393
394
395
396

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
397
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
398

zhangwenwei's avatar
zhangwenwei committed
399
400
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
401
402
403
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
404

zhangwenwei's avatar
zhangwenwei committed
405
406
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
407
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
408
409
410
411
412

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
413

zhangwenwei's avatar
zhangwenwei committed
414
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
415
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
416
417

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
418
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
419
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
420

zhangwenwei's avatar
zhangwenwei committed
421
422
423
        return input_dict

    def __repr__(self):
424
        """str: Return a string that describes the module."""
425
        repr_str = self.__class__.__name__
426
        repr_str += f'db_sampler={self.db_sampler},'
427
        repr_str += f' sample_2d={self.sample_2d},'
428
        repr_str += f' use_ground_plane={self.use_ground_plane}'
429
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
430
431


432
433
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
434
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
435

436
437
438
439
440
441
442
443
444
445
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
446
    Args:
447
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
448
449
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
450
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
451
            Defaults to [0.0, 0.0].
452
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
453
454
455
456
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
457
458

    def __init__(self,
459
460
461
462
                 translation_std: list = [0.25, 0.25, 0.25],
                 global_rot_range: list = [0.0, 0.0],
                 rot_range: list = [-0.15707963267, 0.15707963267],
                 num_try: int = 100):
zhangwenwei's avatar
zhangwenwei committed
463
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
464
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
465
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
466
467
        self.num_try = num_try

468
469
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
470
471
472
473
474

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
475
            dict: Results after adding noise to each object,
476
477
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
478
479
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
480

481
        # TODO: this is inplace operation
482
        numpy_box = gt_bboxes_3d.tensor.numpy()
483
484
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
485
        noise_per_object_v3_(
486
            numpy_box,
487
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
488
489
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
490
491
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
492
493

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
494
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
495
496
497
        return input_dict

    def __repr__(self):
498
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
499
        repr_str = self.__class__.__name__
500
501
502
503
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
504
505
506
        return repr_str


507
@TRANSFORMS.register_module()
508
class GlobalAlignment(BaseTransform):
509
510
511
512
513
514
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
515
516
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
517
            the alignment step.
518
        For example, ScanNet 3D detection task uses aligned ground-truth
519
520
521
            bounding boxes for evaluation.
    """

522
    def __init__(self, rotation_axis: int) -> None:
523
524
        self.rotation_axis = rotation_axis

525
    def _trans_points(self, results: Dict, trans_factor: np.ndarray) -> None:
526
527
528
529
530
531
532
533
534
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
535
        results['points'].translate(trans_factor)
536

537
    def _rot_points(self, results: Dict, rot_mat: np.ndarray) -> None:
538
539
540
541
542
543
544
545
546
547
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
548
        results['points'].rotate(rot_mat.T)
549

550
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
551
552
553
554
555
556
557
558
559
560
561
562
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

563
    def transform(self, results: Dict) -> Dict:
564
565
566
567
568
569
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
570
            dict: Results after global alignment, 'points' and keys in
571
572
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
573
        assert 'axis_align_matrix' in results, \
574
575
            'axis_align_matrix is not provided in GlobalAlignment'

576
        axis_align_matrix = results['axis_align_matrix']
577
578
579
580
581
582
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
583
584
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
585

586
        return results
587
588
589
590
591
592
593

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


594
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
595
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
596
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
597

jshilong's avatar
jshilong committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
616
    Args:
617
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
618
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
619
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
620
            Defaults to [0.95, 1.05].
621
622
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
623
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
624
            is set by ``translation_std``. Defaults to [0, 0, 0]
625
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
626
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
627
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
628
    """
zhangwenwei's avatar
zhangwenwei committed
629
630

    def __init__(self,
jshilong's avatar
jshilong committed
631
632
633
634
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
635
636
637
638
639
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
640
        self.rot_range = rot_range
641
642
643

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
644

zhangwenwei's avatar
zhangwenwei committed
645
        self.scale_ratio_range = scale_ratio_range
646
647
648
649
650
651
652

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
653
654
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
655
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
656
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
657

jshilong's avatar
jshilong committed
658
    def _trans_bbox_points(self, input_dict: dict) -> None:
659
660
661
662
663
664
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
665
            dict: Results after translation, 'points', 'pcd_trans'
jshilong's avatar
jshilong committed
666
667
            and `gt_bboxes_3d` is updated
            in the result dict.
668
        """
669
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
670
671
        trans_factor = np.random.normal(scale=translation_std, size=3).T

672
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
673
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
674
675
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
676

jshilong's avatar
jshilong committed
677
    def _rot_bbox_points(self, input_dict: dict) -> None:
678
679
680
681
682
683
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
684
            dict: Results after rotation, 'points', 'pcd_rotation'
jshilong's avatar
jshilong committed
685
686
            and `gt_bboxes_3d` is updated
            in the result dict.
687
        """
zhangwenwei's avatar
zhangwenwei committed
688
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
689
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
690

jshilong's avatar
jshilong committed
691
692
693
694
695
696
697
698
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
699
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
700
701
702
703
704

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
705
706
707
708
709
710
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
711
712
713
            dict: Results after scaling, 'points' and
            `gt_bboxes_3d` is updated
            in the result dict.
714
        """
zhangwenwei's avatar
zhangwenwei committed
715
        scale = input_dict['pcd_scale_factor']
716
717
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
718
        if self.shift_height:
719
720
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
721
722
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
723

jshilong's avatar
jshilong committed
724
725
726
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
727

jshilong's avatar
jshilong committed
728
    def _random_scale(self, input_dict: dict) -> None:
729
730
731
732
733
734
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
735
736
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
737
        """
zhangwenwei's avatar
zhangwenwei committed
738
739
740
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
741

jshilong's avatar
jshilong committed
742
    def transform(self, input_dict: dict) -> dict:
743
        """Private function to rotate, scale and translate bounding boxes and
744
745
746
747
748
749
750
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
jshilong's avatar
jshilong committed
751
752
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` is updated
            in the result dict.
753
        """
754
755
756
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
757
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
758

zhangwenwei's avatar
zhangwenwei committed
759
760
761
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
762

zhangwenwei's avatar
zhangwenwei committed
763
        self._trans_bbox_points(input_dict)
764
765

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
766
767
768
        return input_dict

    def __repr__(self):
769
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
770
        repr_str = self.__class__.__name__
771
772
773
774
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
775
776
777
        return repr_str


778
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
779
class PointShuffle(BaseTransform):
780
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
781

ZCMax's avatar
ZCMax committed
782
    def transform(self, input_dict: dict) -> dict:
783
784
785
786
787
788
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
789
            dict: Results after filtering, 'points', 'pts_instance_mask'
790
                and 'pts_semantic_mask' keys are updated in the result dict.
791
        """
792
793
794
795
796
797
798
799
800
801
802
803
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
804
805
806
807
808
809
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


810
@TRANSFORMS.register_module()
811
class ObjectRangeFilter(BaseTransform):
812
813
    """Filter objects by the range.

814
815
816
817
818
819
820
821
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

822
823
824
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
825

826
    def __init__(self, point_cloud_range: list):
zhangwenwei's avatar
zhangwenwei committed
827
828
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

829
830
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
831
832
833
834
835

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
836
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
837
838
                keys are updated in the result dict.
        """
839
840
841
842
843
844
845
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
846
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
847
        gt_labels_3d = input_dict['gt_labels_3d']
848
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
849
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
850
851
852
853
854
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
855
856

        # limit rad to [-pi, pi]
857
858
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
859
860
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
861
862
863
        return input_dict

    def __repr__(self):
864
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
865
        repr_str = self.__class__.__name__
866
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
867
868
869
        return repr_str


870
@TRANSFORMS.register_module()
871
class PointsRangeFilter(BaseTransform):
872
873
    """Filter points by the range.

874
875
876
877
878
879
880
881
882
883
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

884
885
886
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
887

888
    def __init__(self, point_cloud_range: list):
889
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
890

891
892
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
893
894
895
896
897

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
898
            dict: Results after filtering, 'points', 'pts_instance_mask'
899
                and 'pts_semantic_mask' keys are updated in the result dict.
900
        """
zhangwenwei's avatar
zhangwenwei committed
901
        points = input_dict['points']
902
903
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
904
        input_dict['points'] = clean_points
905
906
907
908
909
910
911
912
913
914
915
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
916
917
918
        return input_dict

    def __repr__(self):
919
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
920
        repr_str = self.__class__.__name__
921
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
922
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
923
924


925
@TRANSFORMS.register_module()
926
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
927
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
928

929
930
931
932
933
934
935
936
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
937
    Args:
liyinhao's avatar
liyinhao committed
938
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
939
940
    """

941
    def __init__(self, classes: list):
zhangwenwei's avatar
zhangwenwei committed
942
943
944
        self.classes = classes
        self.labels = list(range(len(self.classes)))

945
946
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
947
948
949
950
951

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
952
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
953
954
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
955
956
957
958
959
960
961
962
963
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
964
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
965
966
967
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
968
969


970
971
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
972
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
973
974
975

    Sampling data to a certain number.

976
    Required Keys:
977

978
979
980
981
982
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
983

984
985
986
987
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
988
989
    Args:
        num_points (int): Number of points to be sampled.
990
        sample_range (float, optional): The range where to sample points.
991
992
993
994
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
995
996
    """

997
998
999
1000
    def __init__(self,
                 num_points: int,
                 sample_range: float = None,
                 replace: bool = False):
wuyuefeng's avatar
wuyuefeng committed
1001
        self.num_points = num_points
1002
1003
1004
1005
1006
1007
1008
1009
1010
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
1011
1012
1013
1014
1015
        """Points random sampling.

        Sample points to a certain number.

        Args:
1016
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1017
            num_samples (int): Number of samples to be sampled.
1018
            sample_range (float, optional): Indicating the range where the
1019
                points will be sampled. Defaults to None.
1020
1021
1022
1023
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1024
        Returns:
1025
            tuple[np.ndarray] | np.ndarray:
1026
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
1027
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1028
        """
1029
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1030
            replace = (points.shape[0] < num_samples)
1031
1032
1033
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1034
1035
1036
            dist = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1037
1038
1039
1040
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1041
1042
1043
1044
1045
1046
1047
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1048
1049
1050
1051
1052
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1053
    def transform(self, input_dict: dict) -> dict:
1054
        """Transform function to sample points to in indoor scenes.
1055
1056
1057
1058

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
1059
            dict: Results after sampling, 'points', 'pts_instance_mask'
1060
1061
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
1062
        points = input_dict['points']
1063
1064
1065
1066
1067
1068
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1069
        input_dict['points'] = points
1070

1071
1072
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1073

1074
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1075
            pts_instance_mask = pts_instance_mask[choices]
1076
            input_dict['pts_instance_mask'] = pts_instance_mask
1077
1078
1079

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1080
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1081

1082
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1083
1084

    def __repr__(self):
1085
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1086
        repr_str = self.__class__.__name__
1087
        repr_str += f'(num_points={self.num_points},'
1088
1089
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1090

1091
1092
1093
        return repr_str


1094
@TRANSFORMS.register_module()
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1111
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1112
class IndoorPatchPointSample(BaseTransform):
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1123
1124
1125
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1126
1127
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1128
            If not None, will be used as a patch selection criterion.
1129
1130
1131
1132
1133
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1134
        enlarge_size (float, optional): Enlarge the sampled patch to
1135
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1136
            an augmentation. If None, set it as 0. Defaults to 0.2.
1137
        min_unique_num (int, optional): Minimum number of unique points
1138
1139
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1140
1141
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1142
1143
1144
1145
1146
1147

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1148
1149
1150
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1160
1161
1162
1163
1164
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1165
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1166
        self.min_unique_num = min_unique_num
1167
        self.eps = eps
1168
1169
1170
1171
1172

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1173

ZCMax's avatar
ZCMax committed
1174
1175
1176
1177
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1178
1179
        """Generating model input.

1180
        Generate input by subtracting patch center and adding additional
1181
1182
1183
1184
1185
1186
1187
1188
1189
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1190
            point_type (type): class of input points inherited from BasePoints.
1191
1192

        Returns:
1193
            :obj:`BasePoints`: The generated input data.
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

ZCMax's avatar
ZCMax committed
1217
1218
    def _patch_points_sampling(self, points: BasePoints,
                               sem_mask: np.ndarray) -> BasePoints:
1219
1220
1221
1222
1223
1224
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1225
            points (:obj:`BasePoints`): 3D Points.
1226
1227
1228
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1229
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1230

1231
                - points (:obj:`BasePoints`): 3D Points.
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1242
        for _ in range(self.num_try):
1243
1244
1245
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1246
1247
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1248
1249
1250
1251
1252
1253
1254
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1255
1256
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1257
1258
1259
1260
1261
1262
1263
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1264
            point_idxs = np.where(cur_choice)[0]
1265
            mask = np.sum(
1266
1267
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1268
                axis=1) == 3
1269

1270
1271
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1284
                # if `min_unique_num` is provided, directly compare with it
1285
                flag1 = mask.sum() >= self.min_unique_num
1286

1287
            # 2. selected patch should contain enough annotated points
1288
1289
1290
1291
1292
1293
1294
1295
1296
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1310
1311
1312
1313
1314
1315
1316
1317

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1318
    def transform(self, input_dict: dict) -> dict:
1319
1320
1321
1322
1323
1324
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1325
            dict: Results after sampling, 'points', 'pts_instance_mask'
1326
1327
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
ZCMax's avatar
ZCMax committed
1328
        points = input_dict['points']
1329

ZCMax's avatar
ZCMax committed
1330
        assert 'pts_semantic_mask' in input_dict.keys(), \
1331
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1332
        pts_semantic_mask = input_dict['pts_semantic_mask']
1333
1334
1335
1336

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1347
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1348
1349
1350
1351
1352
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1353

ZCMax's avatar
ZCMax committed
1354
        return input_dict
1355
1356
1357
1358
1359
1360
1361
1362

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1363
1364
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1365
1366
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1367
        return repr_str
1368
1369


1370
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1371
class BackgroundPointsFilter(BaseTransform):
1372
1373
1374
1375
1376
1377
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

ZCMax's avatar
ZCMax committed
1378
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1389
    def transform(self, input_dict: dict) -> dict:
1390
1391
1392
1393
1394
1395
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1396
            dict: Results after filtering, 'points', 'pts_instance_mask'
1397
                and 'pts_semantic_mask' keys are updated in the result dict.
1398
1399
1400
1401
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1402
1403
1404
1405
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1406
1407
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1408
        points_numpy = points.tensor.clone().numpy()
1409
1410
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1411
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1412
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1431
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1432
        return repr_str
1433
1434


1435
@TRANSFORMS.register_module()
1436
1437
1438
1439
1440
1441
1442
1443
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1444
        time_dim (int): Index that indicate the time dimension
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1468
            point_dim (int): The dimension of each points
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1494
            dict: Results after sampling, 'points', 'pts_instance_mask'
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1505
1506
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1507
1508
1509
1510
1511
1512
1513
1514
1515
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1516
        points_numpy = np.concatenate(extra_channel, axis=-1)
1517
1518
1519
1520
1521

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1522
1523
1524
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1525
1526
1527
1528
1529
1530
1531
1532
1533
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1534
                                               points_numpy.shape[1])
1535
1536
1537
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1538
                                                     points_numpy.shape[1])
1539

1540
1541
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1542
        else:
1543
            points_numpy = cur_sweep_points
1544
1545

        if self.cur_voxel_generator._max_num_points == 1:
1546
1547
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1548

1549
        # Restore the corresponding seg and mask fields
1550
        for key, dim_index in map_fields2dim:
1551
            results[key] = points_numpy[..., dim_index]
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1575
1576


1577
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1578
class AffineResize(BaseTransform):
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1595
1596
1597
1598
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1599
1600
1601
1602
1603

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1604
    def transform(self, results: dict) -> dict:
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1649
1650
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1651

ZCMax's avatar
ZCMax committed
1652
1653
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1654
1655
1656
1657
1658
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
                if 'gt_labels' in results:
                    results['gt_labels'] = results['gt_labels'][valid_index]
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1675
1676
1677
1678
1679

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1680
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1681
1682
1683
1684
1685
1686
1687
1688
1689
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1702
        """Affine transform bbox points to input image.
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1720
1721
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1756
1757
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1758
        """Get reference point to calculate affine transform matrix.
1759
1760

        While using opencv to calculate the affine matrix, we need at least
1761
        three corresponding points separately on original image and target
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1775
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1776
class RandomShiftScale(BaseTransform):
1777
1778
1779
1780
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1781
    infos into loading TRANSFORMS. It's designed to be used with
1782
1783
1784
1785
1786
1787
1788
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

ZCMax's avatar
ZCMax committed
1789
    def __init__(self, shift_scale: Tuple[float], aug_prob: float):
1790
1791
1792
1793

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1794
    def transform(self, results: dict) -> dict:
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str