roiaware_pool3d_kernel.cu 13.4 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//Modified from
//https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu
//RoI-aware point cloud feature pooling
//Written by Shaoshuai Shi
//All Rights Reserved 2019.


#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <assert.h>

#include <math.h>
#include <stdio.h>

#define THREADS_PER_BLOCK 256
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))

// #define DEBUG


__device__ inline void lidar_to_local_coords(float shift_x, float shift_y, float rz, float &local_x, float &local_y){
    // should rotate pi/2 + alpha to translate LiDAR to local
    float rot_angle = rz + M_PI / 2;
    float cosa = cos(rot_angle), sina = sin(rot_angle);
    local_x = shift_x * cosa + shift_y * (-sina);
    local_y = shift_x * sina + shift_y * cosa;
}


__device__ inline int check_pt_in_box3d(const float *pt, const float *box3d, float &local_x, float &local_y){
    // param pt: (x, y, z)
    // param box3d: (cx, cy, cz, w, l, h, rz) in LiDAR coordinate, cz in the bottom center
    float x = pt[0], y = pt[1], z = pt[2];
    float cx = box3d[0], cy = box3d[1], cz = box3d[2];
    float w = box3d[3], l = box3d[4], h = box3d[5], rz = box3d[6];
    cz += h / 2.0;  // shift to the center since cz in box3d is the bottom center

    if (fabsf(z - cz) > h / 2.0) return 0;
    lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y);
    float in_flag = (local_x > -l / 2.0) & (local_x < l / 2.0) & (local_y > -w / 2.0) & (local_y < w / 2.0);
    return in_flag;
}


__global__ void generate_pts_mask_for_box3d(int boxes_num, int pts_num, int out_x, int out_y, int out_z,
    const float *rois, const float *pts, int *pts_mask){
    // params rois: (N, 7) [x, y, z, w, l, h, rz] in LiDAR coordinate
    // params pts: (npoints, 3) [x, y, z]
    // params pts_mask: (N, npoints): -1 means point doesnot in this box, otherwise: encode (x_idxs, y_idxs, z_idxs) by binary bit
    int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int box_idx = blockIdx.y;
    if (pt_idx >= pts_num || box_idx >= boxes_num) return;

    pts += pt_idx * 3;
    rois += box_idx * 7;
    pts_mask += box_idx * pts_num + pt_idx;

    float local_x = 0, local_y = 0;
    int cur_in_flag = check_pt_in_box3d(pts, rois, local_x, local_y);

    pts_mask[0] = -1;
    if (cur_in_flag > 0){
        float local_z = pts[2] - rois[2];
        float w = rois[3], l = rois[4], h = rois[5];

        float x_res = l / out_x;
        float y_res = w / out_y;
        float z_res = h / out_z;

        unsigned int x_idx = int((local_x + l / 2) / x_res);
        unsigned int y_idx = int((local_y + w / 2) / y_res);
        unsigned int z_idx = int(local_z / z_res);

        x_idx = min(max(x_idx, 0), out_x - 1);
        y_idx = min(max(y_idx, 0), out_y - 1);
        z_idx = min(max(z_idx, 0), out_z - 1);

        unsigned int idx_encoding = (x_idx << 16) + (y_idx << 8) + z_idx;
#ifdef DEBUG
        printf("mask: pts_%d(%.3f, %.3f, %.3f), local(%.3f, %.3f, %.3f), idx(%d, %d, %d), res(%.3f, %.3f, %.3f), idx_encoding=%x\n",
            pt_idx, pts[0], pts[1], pts[2], local_x, local_y, local_z, x_idx, y_idx, z_idx, x_res, y_res, z_res, idx_encoding);
#endif

        pts_mask[0] = idx_encoding;
    }
}


__global__ void collect_inside_pts_for_box3d(int boxes_num, int pts_num, int max_pts_each_voxel,
    int out_x, int out_y, int out_z, const int *pts_mask, int *pts_idx_of_voxels){
    // params pts_mask: (N, npoints)  0 or 1
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)

    int box_idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (box_idx >= boxes_num) return;

    int max_num_pts = max_pts_each_voxel - 1;  // index 0 is the counter
    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel;

    for (int k = 0; k < pts_num; k++){
        if (pts_mask[box_idx * pts_num + k] != -1){
            unsigned int idx_encoding = pts_mask[box_idx * pts_num + k];
            unsigned int x_idx = (idx_encoding >> 16) & 0xFF;
            unsigned int y_idx = (idx_encoding >> 8) & 0xFF;
            unsigned int z_idx = idx_encoding & 0xFF;
            unsigned int base_offset = x_idx * out_y * out_z * max_pts_each_voxel + y_idx * out_z * max_pts_each_voxel + z_idx * max_pts_each_voxel;
            unsigned int cnt = pts_idx_of_voxels[base_offset];
            if (cnt < max_num_pts){
                pts_idx_of_voxels[base_offset + cnt + 1] = k;
                pts_idx_of_voxels[base_offset]++;
            }
#ifdef DEBUG
        printf("collect: pts_%d, idx(%d, %d, %d), idx_encoding=%x\n",
            k, x_idx, y_idx, z_idx, idx_encoding);
#endif

        }
    }
}


__global__ void roiaware_maxpool3d(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x,
    int out_y, int out_z, const float *pts_feature, const int *pts_idx_of_voxels, float *pooled_features, int *argmax){
    // params pts_feature: (npoints, C)
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel), index 0 is the counter
    // params pooled_features: (N, out_x, out_y, out_z, C)
    // params argmax: (N, out_x, out_y, out_z, C)

    int box_idx = blockIdx.z;
    int channel_idx = blockIdx.y;
    int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x;

    int x_idx = voxel_idx_flat / (out_y * out_z);
    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    int z_idx = voxel_idx_flat % out_z;
    if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return;

#ifdef DEBUG
    printf("src pts_idx_of_voxels: (%p, ), argmax: %p\n", pts_idx_of_voxels, argmax);
#endif

    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel;
    pooled_features += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;
    argmax += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;

    int argmax_idx = -1;
    float max_val = -1e50;

    int total_pts = pts_idx_of_voxels[0];

    for (int k = 1; k <= total_pts; k++){
        if (pts_feature[pts_idx_of_voxels[k] * channels + channel_idx] > max_val){
            max_val = pts_feature[pts_idx_of_voxels[k] * channels + channel_idx];
            argmax_idx = pts_idx_of_voxels[k];
        }
    }

    if (argmax_idx != -1){
        pooled_features[0] = max_val;
    }
    argmax[0] = argmax_idx;

#ifdef DEBUG
    printf("channel_%d idx(%d, %d, %d), argmax_idx=(%d, %.3f), total=%d, after pts_idx: %p, argmax: (%p, %d)\n",
        channel_idx, x_idx, y_idx, z_idx, argmax_idx, max_val, total_pts, pts_idx_of_voxels, argmax, argmax_idx);
#endif
}


__global__ void roiaware_avgpool3d(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x,
    int out_y, int out_z, const float *pts_feature, const int *pts_idx_of_voxels, float *pooled_features){
    // params pts_feature: (npoints, C)
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel), index 0 is the counter
    // params pooled_features: (N, out_x, out_y, out_z, C)
    // params argmax: (N, out_x, out_y, out_z, C)

    int box_idx = blockIdx.z;
    int channel_idx = blockIdx.y;
    int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x;

    int x_idx = voxel_idx_flat / (out_y * out_z);
    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    int z_idx = voxel_idx_flat % out_z;
    if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return;

    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel;
    pooled_features += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;

    float sum_val = 0;
    int total_pts = pts_idx_of_voxels[0];

    for (int k = 1; k <= total_pts; k++){
        sum_val += pts_feature[pts_idx_of_voxels[k] * channels + channel_idx];
    }

    if (total_pts > 0){
        pooled_features[0] = sum_val / total_pts;
    }
}



void roiaware_pool3d_launcher(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x, int out_y, int out_z,
    const float *rois, const float *pts, const float *pts_feature, int *argmax, int *pts_idx_of_voxels, float *pooled_features, int pool_method){
    // params rois: (N, 7) [x, y, z, w, l, h, rz] in LiDAR coordinate
    // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate
    // params pts_feature: (npoints, C)
    // params argmax: (N, out_x, out_y, out_z, C)
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    // params pooled_features: (N, out_x, out_y, out_z, C)
    // params pool_method: 0: max_pool 1: avg_pool

    int *pts_mask = NULL;
    cudaMalloc(&pts_mask, boxes_num * pts_num * sizeof(int));  // (N, M)
    cudaMemset(pts_mask, -1, boxes_num * pts_num * sizeof(int));

    dim3 blocks_mask(DIVUP(pts_num, THREADS_PER_BLOCK), boxes_num);
    dim3 threads(THREADS_PER_BLOCK);
    generate_pts_mask_for_box3d<<<blocks_mask, threads>>>(boxes_num, pts_num, out_x, out_y, out_z, rois, pts, pts_mask);

    // TODO: Merge the collect and pool functions, SS

    dim3 blocks_collect(DIVUP(boxes_num, THREADS_PER_BLOCK));
    collect_inside_pts_for_box3d<<<blocks_collect, threads>>>(boxes_num, pts_num, max_pts_each_voxel,
        out_x, out_y, out_z, pts_mask, pts_idx_of_voxels);

    dim3 blocks_pool(DIVUP(out_x * out_y * out_z, THREADS_PER_BLOCK), channels, boxes_num);
    if (pool_method == 0){
        roiaware_maxpool3d<<<blocks_pool, threads>>>(boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
            pts_feature, pts_idx_of_voxels, pooled_features, argmax);
    }
    else if (pool_method == 1){
        roiaware_avgpool3d<<<blocks_pool, threads>>>(boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
            pts_feature, pts_idx_of_voxels, pooled_features);
    }


    cudaFree(pts_mask);

#ifdef DEBUG
    cudaDeviceSynchronize();  // for using printf in kernel function
#endif
}


__global__ void roiaware_maxpool3d_backward(int boxes_num, int channels, int out_x, int out_y, int out_z,
    const int *argmax, const float *grad_out, float *grad_in){
    // params argmax: (N, out_x, out_y, out_z, C)
    // params grad_out: (N, out_x, out_y, out_z, C)
    // params grad_in: (npoints, C), return value

    int box_idx = blockIdx.z;
    int channel_idx = blockIdx.y;
    int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x;

    int x_idx = voxel_idx_flat / (out_y * out_z);
    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    int z_idx = voxel_idx_flat % out_z;
    if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return;

    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    argmax += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;
    grad_out += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;

    if (argmax[0] == -1) return;

    atomicAdd(grad_in + argmax[0] * channels + channel_idx, grad_out[0] * 1);
}


__global__ void roiaware_avgpool3d_backward(int boxes_num, int channels, int out_x, int out_y, int out_z,
    int max_pts_each_voxel, const int *pts_idx_of_voxels, const float *grad_out, float *grad_in){
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    // params grad_out: (N, out_x, out_y, out_z, C)
    // params grad_in: (npoints, C), return value

    int box_idx = blockIdx.z;
    int channel_idx = blockIdx.y;
    int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x;

    int x_idx = voxel_idx_flat / (out_y * out_z);
    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    int z_idx = voxel_idx_flat % out_z;
    if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return;

    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel;
    grad_out += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx;


    int total_pts = pts_idx_of_voxels[0];
    float cur_grad = 1 / fmaxf(float(total_pts), 1.0);
    for (int k = 1; k <= total_pts; k++){
        atomicAdd(grad_in + pts_idx_of_voxels[k] * channels + channel_idx, grad_out[0] * cur_grad);
    }
}



void roiaware_pool3d_backward_launcher(int boxes_num, int out_x, int out_y, int out_z, int channels, int max_pts_each_voxel,
    const int *pts_idx_of_voxels, const int *argmax, const float *grad_out, float *grad_in, int pool_method){
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    // params argmax: (N, out_x, out_y, out_z, C)
    // params grad_out: (N, out_x, out_y, out_z, C)
    // params grad_in: (npoints, C), return value
    // params pool_method: 0: max_pool, 1: avg_pool

    dim3 blocks(DIVUP(out_x * out_y * out_z, THREADS_PER_BLOCK), channels, boxes_num);
    dim3 threads(THREADS_PER_BLOCK);
    if (pool_method == 0){
        roiaware_maxpool3d_backward<<<blocks, threads>>>(
            boxes_num, channels, out_x, out_y, out_z, argmax, grad_out, grad_in
        );
    }
    else if (pool_method == 1){
        roiaware_avgpool3d_backward<<<blocks, threads>>>(
            boxes_num, channels, out_x, out_y, out_z, max_pts_each_voxel, pts_idx_of_voxels, grad_out, grad_in
        );
    }

}