//Modified from //https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu //RoI-aware point cloud feature pooling //Written by Shaoshuai Shi //All Rights Reserved 2019. #include #include #include #include #include #define THREADS_PER_BLOCK 256 #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) // #define DEBUG __device__ inline void lidar_to_local_coords(float shift_x, float shift_y, float rz, float &local_x, float &local_y){ // should rotate pi/2 + alpha to translate LiDAR to local float rot_angle = rz + M_PI / 2; float cosa = cos(rot_angle), sina = sin(rot_angle); local_x = shift_x * cosa + shift_y * (-sina); local_y = shift_x * sina + shift_y * cosa; } __device__ inline int check_pt_in_box3d(const float *pt, const float *box3d, float &local_x, float &local_y){ // param pt: (x, y, z) // param box3d: (cx, cy, cz, w, l, h, rz) in LiDAR coordinate, cz in the bottom center float x = pt[0], y = pt[1], z = pt[2]; float cx = box3d[0], cy = box3d[1], cz = box3d[2]; float w = box3d[3], l = box3d[4], h = box3d[5], rz = box3d[6]; cz += h / 2.0; // shift to the center since cz in box3d is the bottom center if (fabsf(z - cz) > h / 2.0) return 0; lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y); float in_flag = (local_x > -l / 2.0) & (local_x < l / 2.0) & (local_y > -w / 2.0) & (local_y < w / 2.0); return in_flag; } __global__ void generate_pts_mask_for_box3d(int boxes_num, int pts_num, int out_x, int out_y, int out_z, const float *rois, const float *pts, int *pts_mask){ // params rois: (N, 7) [x, y, z, w, l, h, rz] in LiDAR coordinate // params pts: (npoints, 3) [x, y, z] // params pts_mask: (N, npoints): -1 means point doesnot in this box, otherwise: encode (x_idxs, y_idxs, z_idxs) by binary bit int pt_idx = blockIdx.x * blockDim.x + threadIdx.x; int box_idx = blockIdx.y; if (pt_idx >= pts_num || box_idx >= boxes_num) return; pts += pt_idx * 3; rois += box_idx * 7; pts_mask += box_idx * pts_num + pt_idx; float local_x = 0, local_y = 0; int cur_in_flag = check_pt_in_box3d(pts, rois, local_x, local_y); pts_mask[0] = -1; if (cur_in_flag > 0){ float local_z = pts[2] - rois[2]; float w = rois[3], l = rois[4], h = rois[5]; float x_res = l / out_x; float y_res = w / out_y; float z_res = h / out_z; unsigned int x_idx = int((local_x + l / 2) / x_res); unsigned int y_idx = int((local_y + w / 2) / y_res); unsigned int z_idx = int(local_z / z_res); x_idx = min(max(x_idx, 0), out_x - 1); y_idx = min(max(y_idx, 0), out_y - 1); z_idx = min(max(z_idx, 0), out_z - 1); unsigned int idx_encoding = (x_idx << 16) + (y_idx << 8) + z_idx; #ifdef DEBUG printf("mask: pts_%d(%.3f, %.3f, %.3f), local(%.3f, %.3f, %.3f), idx(%d, %d, %d), res(%.3f, %.3f, %.3f), idx_encoding=%x\n", pt_idx, pts[0], pts[1], pts[2], local_x, local_y, local_z, x_idx, y_idx, z_idx, x_res, y_res, z_res, idx_encoding); #endif pts_mask[0] = idx_encoding; } } __global__ void collect_inside_pts_for_box3d(int boxes_num, int pts_num, int max_pts_each_voxel, int out_x, int out_y, int out_z, const int *pts_mask, int *pts_idx_of_voxels){ // params pts_mask: (N, npoints) 0 or 1 // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) int box_idx = blockIdx.x * blockDim.x + threadIdx.x; if (box_idx >= boxes_num) return; int max_num_pts = max_pts_each_voxel - 1; // index 0 is the counter pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel; for (int k = 0; k < pts_num; k++){ if (pts_mask[box_idx * pts_num + k] != -1){ unsigned int idx_encoding = pts_mask[box_idx * pts_num + k]; unsigned int x_idx = (idx_encoding >> 16) & 0xFF; unsigned int y_idx = (idx_encoding >> 8) & 0xFF; unsigned int z_idx = idx_encoding & 0xFF; unsigned int base_offset = x_idx * out_y * out_z * max_pts_each_voxel + y_idx * out_z * max_pts_each_voxel + z_idx * max_pts_each_voxel; unsigned int cnt = pts_idx_of_voxels[base_offset]; if (cnt < max_num_pts){ pts_idx_of_voxels[base_offset + cnt + 1] = k; pts_idx_of_voxels[base_offset]++; } #ifdef DEBUG printf("collect: pts_%d, idx(%d, %d, %d), idx_encoding=%x\n", k, x_idx, y_idx, z_idx, idx_encoding); #endif } } } __global__ void roiaware_maxpool3d(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x, int out_y, int out_z, const float *pts_feature, const int *pts_idx_of_voxels, float *pooled_features, int *argmax){ // params pts_feature: (npoints, C) // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel), index 0 is the counter // params pooled_features: (N, out_x, out_y, out_z, C) // params argmax: (N, out_x, out_y, out_z, C) int box_idx = blockIdx.z; int channel_idx = blockIdx.y; int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x; int x_idx = voxel_idx_flat / (out_y * out_z); int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z; int z_idx = voxel_idx_flat % out_z; if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return; #ifdef DEBUG printf("src pts_idx_of_voxels: (%p, ), argmax: %p\n", pts_idx_of_voxels, argmax); #endif int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx; pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel; pooled_features += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; argmax += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; int argmax_idx = -1; float max_val = -1e50; int total_pts = pts_idx_of_voxels[0]; for (int k = 1; k <= total_pts; k++){ if (pts_feature[pts_idx_of_voxels[k] * channels + channel_idx] > max_val){ max_val = pts_feature[pts_idx_of_voxels[k] * channels + channel_idx]; argmax_idx = pts_idx_of_voxels[k]; } } if (argmax_idx != -1){ pooled_features[0] = max_val; } argmax[0] = argmax_idx; #ifdef DEBUG printf("channel_%d idx(%d, %d, %d), argmax_idx=(%d, %.3f), total=%d, after pts_idx: %p, argmax: (%p, %d)\n", channel_idx, x_idx, y_idx, z_idx, argmax_idx, max_val, total_pts, pts_idx_of_voxels, argmax, argmax_idx); #endif } __global__ void roiaware_avgpool3d(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x, int out_y, int out_z, const float *pts_feature, const int *pts_idx_of_voxels, float *pooled_features){ // params pts_feature: (npoints, C) // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel), index 0 is the counter // params pooled_features: (N, out_x, out_y, out_z, C) // params argmax: (N, out_x, out_y, out_z, C) int box_idx = blockIdx.z; int channel_idx = blockIdx.y; int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x; int x_idx = voxel_idx_flat / (out_y * out_z); int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z; int z_idx = voxel_idx_flat % out_z; if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return; int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx; pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel; pooled_features += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; float sum_val = 0; int total_pts = pts_idx_of_voxels[0]; for (int k = 1; k <= total_pts; k++){ sum_val += pts_feature[pts_idx_of_voxels[k] * channels + channel_idx]; } if (total_pts > 0){ pooled_features[0] = sum_val / total_pts; } } void roiaware_pool3d_launcher(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x, int out_y, int out_z, const float *rois, const float *pts, const float *pts_feature, int *argmax, int *pts_idx_of_voxels, float *pooled_features, int pool_method){ // params rois: (N, 7) [x, y, z, w, l, h, rz] in LiDAR coordinate // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate // params pts_feature: (npoints, C) // params argmax: (N, out_x, out_y, out_z, C) // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) // params pooled_features: (N, out_x, out_y, out_z, C) // params pool_method: 0: max_pool 1: avg_pool int *pts_mask = NULL; cudaMalloc(&pts_mask, boxes_num * pts_num * sizeof(int)); // (N, M) cudaMemset(pts_mask, -1, boxes_num * pts_num * sizeof(int)); dim3 blocks_mask(DIVUP(pts_num, THREADS_PER_BLOCK), boxes_num); dim3 threads(THREADS_PER_BLOCK); generate_pts_mask_for_box3d<<>>(boxes_num, pts_num, out_x, out_y, out_z, rois, pts, pts_mask); // TODO: Merge the collect and pool functions, SS dim3 blocks_collect(DIVUP(boxes_num, THREADS_PER_BLOCK)); collect_inside_pts_for_box3d<<>>(boxes_num, pts_num, max_pts_each_voxel, out_x, out_y, out_z, pts_mask, pts_idx_of_voxels); dim3 blocks_pool(DIVUP(out_x * out_y * out_z, THREADS_PER_BLOCK), channels, boxes_num); if (pool_method == 0){ roiaware_maxpool3d<<>>(boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z, pts_feature, pts_idx_of_voxels, pooled_features, argmax); } else if (pool_method == 1){ roiaware_avgpool3d<<>>(boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z, pts_feature, pts_idx_of_voxels, pooled_features); } cudaFree(pts_mask); #ifdef DEBUG cudaDeviceSynchronize(); // for using printf in kernel function #endif } __global__ void roiaware_maxpool3d_backward(int boxes_num, int channels, int out_x, int out_y, int out_z, const int *argmax, const float *grad_out, float *grad_in){ // params argmax: (N, out_x, out_y, out_z, C) // params grad_out: (N, out_x, out_y, out_z, C) // params grad_in: (npoints, C), return value int box_idx = blockIdx.z; int channel_idx = blockIdx.y; int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x; int x_idx = voxel_idx_flat / (out_y * out_z); int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z; int z_idx = voxel_idx_flat % out_z; if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return; int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx; argmax += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; grad_out += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; if (argmax[0] == -1) return; atomicAdd(grad_in + argmax[0] * channels + channel_idx, grad_out[0] * 1); } __global__ void roiaware_avgpool3d_backward(int boxes_num, int channels, int out_x, int out_y, int out_z, int max_pts_each_voxel, const int *pts_idx_of_voxels, const float *grad_out, float *grad_in){ // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) // params grad_out: (N, out_x, out_y, out_z, C) // params grad_in: (npoints, C), return value int box_idx = blockIdx.z; int channel_idx = blockIdx.y; int voxel_idx_flat = blockIdx.x * blockDim.x + threadIdx.x; int x_idx = voxel_idx_flat / (out_y * out_z); int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z; int z_idx = voxel_idx_flat % out_z; if (box_idx >= boxes_num || channel_idx >= channels|| x_idx >= out_x || y_idx >= out_y || z_idx >= out_z) return; int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx; pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel + offset_base * max_pts_each_voxel; grad_out += box_idx * out_x * out_y * out_z * channels + offset_base * channels + channel_idx; int total_pts = pts_idx_of_voxels[0]; float cur_grad = 1 / fmaxf(float(total_pts), 1.0); for (int k = 1; k <= total_pts; k++){ atomicAdd(grad_in + pts_idx_of_voxels[k] * channels + channel_idx, grad_out[0] * cur_grad); } } void roiaware_pool3d_backward_launcher(int boxes_num, int out_x, int out_y, int out_z, int channels, int max_pts_each_voxel, const int *pts_idx_of_voxels, const int *argmax, const float *grad_out, float *grad_in, int pool_method){ // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) // params argmax: (N, out_x, out_y, out_z, C) // params grad_out: (N, out_x, out_y, out_z, C) // params grad_in: (npoints, C), return value // params pool_method: 0: max_pool, 1: avg_pool dim3 blocks(DIVUP(out_x * out_y * out_z, THREADS_PER_BLOCK), channels, boxes_num); dim3 threads(THREADS_PER_BLOCK); if (pool_method == 0){ roiaware_maxpool3d_backward<<>>( boxes_num, channels, out_x, out_y, out_z, argmax, grad_out, grad_in ); } else if (pool_method == 1){ roiaware_avgpool3d_backward<<>>( boxes_num, channels, out_x, out_y, out_z, max_pts_each_voxel, pts_idx_of_voxels, grad_out, grad_in ); } }