test_bbox_coders.py 28.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
yinchimaoliang's avatar
yinchimaoliang committed
2
import torch
Tai-Wang's avatar
Tai-Wang committed
3
4
from mmcv.cnn import Scale
from torch import nn as nn
yinchimaoliang's avatar
yinchimaoliang committed
5

6
7
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
yinchimaoliang's avatar
yinchimaoliang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from mmdet.core import build_bbox_coder


def test_partial_bin_based_box_coder():
    box_coder_cfg = dict(
        type='PartialBinBasedBBoxCoder',
        num_sizes=10,
        num_dir_bins=12,
        with_rot=True,
        mean_sizes=[[2.114256, 1.620300, 0.927272],
                    [0.791118, 1.279516, 0.718182],
                    [0.923508, 1.867419, 0.845495],
                    [0.591958, 0.552978, 0.827272],
                    [0.699104, 0.454178, 0.75625],
                    [0.69519, 1.346299, 0.736364],
                    [0.528526, 1.002642, 1.172878],
                    [0.500618, 0.632163, 0.683424],
                    [0.404671, 1.071108, 1.688889],
                    [0.76584, 1.398258, 0.472728]])
    box_coder = build_bbox_coder(box_coder_cfg)

    # test eocode
    gt_bboxes = DepthInstance3DBoxes(
        [[0.8308, 4.1168, -1.2035, 2.2493, 1.8444, 1.9245, 1.6486],
         [2.3002, 4.8149, -1.2442, 0.5718, 0.8629, 0.9510, 1.6030],
         [-1.1477, 1.8090, -1.1725, 0.6965, 1.5273, 2.0563, 0.0552]])

    gt_labels = torch.tensor([0, 1, 2])
    center_target, size_class_target, size_res_target, dir_class_target, \
        dir_res_target = box_coder.encode(gt_bboxes, gt_labels)
    expected_center_target = torch.tensor([[0.8308, 4.1168, -0.2413],
                                           [2.3002, 4.8149, -0.7687],
                                           [-1.1477, 1.8090, -0.1444]])
    expected_size_class_target = torch.tensor([0, 1, 2])
    expected_size_res_target = torch.tensor([[0.1350, 0.2241, 0.9972],
                                             [-0.2193, -0.4166, 0.2328],
                                             [-0.2270, -0.3401, 1.2108]])
    expected_dir_class_target = torch.tensor([3, 3, 0])
    expected_dir_res_target = torch.tensor([0.0778, 0.0322, 0.0552])
    assert torch.allclose(center_target, expected_center_target, atol=1e-4)
    assert torch.all(size_class_target == expected_size_class_target)
    assert torch.allclose(size_res_target, expected_size_res_target, atol=1e-4)
    assert torch.all(dir_class_target == expected_dir_class_target)
    assert torch.allclose(dir_res_target, expected_dir_res_target, atol=1e-4)

    # test decode
    center = torch.tensor([[[0.8014, 3.4134,
                             -0.6133], [2.6375, 8.4191, 2.0438],
                            [4.2017, 5.2504,
                             -0.7851], [-1.0088, 5.4107, 1.6293],
                            [1.4837, 4.0268, 0.6222]]])

    size_class = torch.tensor([[[
        -1.0061, -2.2788, 1.1322, -4.4380, -11.0526, -2.8113, -2.0642, -7.5886,
        -4.8627, -5.0437
    ],
                                [
                                    -2.2058, -0.3527, -1.9976, 0.8815, -2.7980,
                                    -1.9053, -0.5097, -2.0232, -1.4242, -4.1192
                                ],
                                [
                                    -1.4783, -0.1009, -1.1537, 0.3052, -4.3147,
                                    -2.6529, 0.2729, -0.3755, -2.6479, -3.7548
                                ],
                                [
                                    -6.1809, -3.5024, -8.3273, 1.1252, -4.3315,
                                    -7.8288, -4.6091, -5.8153, 0.7480, -10.1396
                                ],
                                [
                                    -9.0424, -3.7883, -6.0788, -1.8855,
                                    -10.2493, -9.7164, -1.0658, -4.1713,
                                    1.1173, -10.6204
                                ]]])

    size_res = torch.tensor([[[[-9.8976e-02, -5.2152e-01, -7.6421e-02],
                               [1.4593e-01, 5.6099e-01, 8.9421e-02],
                               [5.1481e-02, 3.9280e-01, 1.2705e-01],
                               [3.6869e-01, 7.0558e-01, 1.4647e-01],
                               [4.7683e-01, 3.3644e-01, 2.3481e-01],
                               [8.7346e-02, 8.4987e-01, 3.3265e-01],
                               [2.1393e-01, 8.5585e-01, 9.8948e-02],
                               [7.8530e-02, 5.9694e-02, -8.7211e-02],
                               [1.8551e-01, 1.1308e+00, -5.1864e-01],
                               [3.6485e-01, 7.3757e-01, 1.5264e-01]],
                              [[-9.5593e-01, -5.0455e-01, 1.9554e-01],
                               [-1.0870e-01, 1.8025e-01, 1.0228e-01],
                               [-8.2882e-02, -4.3771e-01, 9.2135e-02],
                               [-4.0840e-02, -5.9841e-02, 1.1982e-01],
                               [7.3448e-02, 5.2045e-02, 1.7301e-01],
                               [-4.0440e-02, 4.9532e-02, 1.1266e-01],
                               [3.5857e-02, 1.3564e-02, 1.0212e-01],
                               [-1.0407e-01, -5.9321e-02, 9.2622e-02],
                               [7.4691e-03, 9.3080e-02, -4.4077e-01],
                               [-6.0121e-02, -1.3381e-01, -6.8083e-02]],
                              [[-9.3970e-01, -9.7823e-01, -5.1075e-02],
                               [-1.2843e-01, -1.8381e-01, 7.1327e-02],
                               [-1.2247e-01, -8.1115e-01, 3.6495e-02],
                               [4.9154e-02, -4.5440e-02, 8.9520e-02],
                               [1.5653e-01, 3.5990e-02, 1.6414e-01],
                               [-5.9621e-02, 4.9357e-03, 1.4264e-01],
                               [8.5235e-04, -1.0030e-01, -3.0712e-02],
                               [-3.7255e-02, 2.8996e-02, 5.5545e-02],
                               [3.9298e-02, -4.7420e-02, -4.9147e-01],
                               [-1.1548e-01, -1.5895e-01, -3.9155e-02]],
                              [[-1.8725e+00, -7.4102e-01, 1.0524e+00],
                               [-3.3210e-01, 4.7828e-02, -3.2666e-02],
                               [-2.7949e-01, 5.5541e-02, -1.0059e-01],
                               [-8.5533e-02, 1.4870e-01, -1.6709e-01],
                               [3.8283e-01, 2.6609e-01, 2.1361e-01],
                               [-4.2156e-01, 3.2455e-01, 6.7309e-01],
                               [-2.4336e-02, -8.3366e-02, 3.9913e-01],
                               [8.2142e-03, 4.8323e-02, -1.5247e-01],
                               [-4.8142e-02, -3.0074e-01, -1.6829e-01],
                               [1.3274e-01, -2.3825e-01, -1.8127e-01]],
                              [[-1.2576e+00, -6.1550e-01, 7.9430e-01],
                               [-4.7222e-01, 1.5634e+00, -5.9460e-02],
                               [-3.5367e-01, 1.3616e+00, -1.6421e-01],
                               [-1.6611e-02, 2.4231e-01, -9.6188e-02],
                               [5.4486e-01, 4.6833e-01, 5.1151e-01],
                               [-6.1755e-01, 1.0292e+00, 1.2458e+00],
                               [-6.8152e-02, 2.4786e-01, 9.5088e-01],
                               [-4.8745e-02, 1.5134e-01, -9.9962e-02],
                               [2.4485e-03, -7.5991e-02, 1.3545e-01],
                               [4.1608e-01, -1.2093e-01, -3.1643e-01]]]])

    dir_class = torch.tensor([[[
        -1.0230, -5.1965, -5.2195, 2.4030, -2.7661, -7.3399, -1.1640, -4.0630,
        -5.2940, 0.8245, -3.1869, -6.1743
    ],
                               [
                                   -1.9503, -1.6940, -0.8716, -1.1494, -0.8196,
                                   0.2862, -0.2921, -0.7894, -0.2481, -0.9916,
                                   -1.4304, -1.2466
                               ],
                               [
                                   -1.7435, -1.2043, -0.1265, 0.5083, -0.0717,
                                   -0.9560, -1.6171, -2.6463, -2.3863, -2.1358,
                                   -1.8812, -2.3117
                               ],
                               [
                                   -1.9282, 0.3792, -1.8426, -1.4587, -0.8582,
                                   -3.4639, -3.2133, -3.7867, -7.6781, -6.4459,
                                   -6.2455, -5.4797
                               ],
                               [
                                   -3.1869, 0.4456, -0.5824, 0.9994, -1.0554,
                                   -8.4232, -7.7019, -7.1382, -10.2724,
                                   -7.8229, -8.1860, -8.6194
                               ]]])

    dir_res = torch.tensor(
        [[[
            1.1022e-01, -2.3750e-01, 2.0381e-01, 1.2177e-01, -2.8501e-01,
            1.5351e-01, 1.2218e-01, -2.0677e-01, 1.4468e-01, 1.1593e-01,
            -2.6864e-01, 1.1290e-01
        ],
          [
              -1.5788e-02, 4.1538e-02, -2.2857e-04, -1.4011e-02, 4.2560e-02,
              -3.1186e-03, -5.0343e-02, 6.8110e-03, -2.6728e-02, -3.2781e-02,
              3.6889e-02, -1.5609e-03
          ],
          [
              1.9004e-02, 5.7105e-03, 6.0329e-02, 1.3074e-02, -2.5546e-02,
              -1.1456e-02, -3.2484e-02, -3.3487e-02, 1.6609e-03, 1.7095e-02,
              1.2647e-05, 2.4814e-02
          ],
          [
              1.4482e-01, -6.3083e-02, 5.8307e-02, 9.1396e-02, -8.4571e-02,
              4.5890e-02, 5.6243e-02, -1.2448e-01, -9.5244e-02, 4.5746e-02,
              -1.7390e-02, 9.0267e-02
          ],
          [
              1.8065e-01, -2.0078e-02, 8.5401e-02, 1.0784e-01, -1.2495e-01,
              2.2796e-02, 1.1310e-01, -8.4364e-02, -1.1904e-01, 6.1180e-02,
              -1.8109e-02, 1.1229e-01
          ]]])
    bbox_out = dict(
        center=center,
        size_class=size_class,
        size_res=size_res,
        dir_class=dir_class,
        dir_res=dir_res)

    bbox3d = box_coder.decode(bbox_out)
    expected_bbox3d = torch.tensor(
        [[[0.8014, 3.4134, -0.6133, 0.9750, 2.2602, 0.9725, 1.6926],
          [2.6375, 8.4191, 2.0438, 0.5511, 0.4931, 0.9471, 2.6149],
          [4.2017, 5.2504, -0.7851, 0.6411, 0.5075, 0.9168, 1.5839],
          [-1.0088, 5.4107, 1.6293, 0.5064, 0.7017, 0.6602, 0.4605],
          [1.4837, 4.0268, 0.6222, 0.4071, 0.9951, 1.8243, 1.6786]]])
    assert torch.allclose(bbox3d, expected_bbox3d, atol=1e-4)

    # test split_pred
201
202
    cls_preds = torch.rand(2, 12, 256)
    reg_preds = torch.rand(2, 67, 256)
yinchimaoliang's avatar
yinchimaoliang committed
203
    base_xyz = torch.rand(2, 256, 3)
204
    results = box_coder.split_pred(cls_preds, reg_preds, base_xyz)
yinchimaoliang's avatar
yinchimaoliang committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    obj_scores = results['obj_scores']
    center = results['center']
    dir_class = results['dir_class']
    dir_res_norm = results['dir_res_norm']
    dir_res = results['dir_res']
    size_class = results['size_class']
    size_res_norm = results['size_res_norm']
    size_res = results['size_res']
    sem_scores = results['sem_scores']
    assert obj_scores.shape == torch.Size([2, 256, 2])
    assert center.shape == torch.Size([2, 256, 3])
    assert dir_class.shape == torch.Size([2, 256, 12])
    assert dir_res_norm.shape == torch.Size([2, 256, 12])
    assert dir_res.shape == torch.Size([2, 256, 12])
    assert size_class.shape == torch.Size([2, 256, 10])
    assert size_res_norm.shape == torch.Size([2, 256, 10, 3])
    assert size_res.shape == torch.Size([2, 256, 10, 3])
    assert sem_scores.shape == torch.Size([2, 256, 10])
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329


def test_anchor_free_box_coder():
    box_coder_cfg = dict(
        type='AnchorFreeBBoxCoder', num_dir_bins=12, with_rot=True)
    box_coder = build_bbox_coder(box_coder_cfg)

    # test encode
    gt_bboxes = LiDARInstance3DBoxes([[
        2.1227e+00, 5.7951e+00, -9.9900e-01, 1.6736e+00, 4.2419e+00,
        1.5473e+00, -1.5501e+00
    ],
                                      [
                                          1.1791e+01, 9.0276e+00, -8.5772e-01,
                                          1.6210e+00, 3.5367e+00, 1.4841e+00,
                                          -1.7369e+00
                                      ],
                                      [
                                          2.3638e+01, 9.6997e+00, -5.6713e-01,
                                          1.7578e+00, 4.6103e+00, 1.5999e+00,
                                          -1.4556e+00
                                      ]])
    gt_labels = torch.tensor([0, 0, 0])

    (center_targets, size_targets, dir_class_targets,
     dir_res_targets) = box_coder.encode(gt_bboxes, gt_labels)

    expected_center_target = torch.tensor([[2.1227, 5.7951, -0.2253],
                                           [11.7908, 9.0276, -0.1156],
                                           [23.6380, 9.6997, 0.2328]])
    expected_size_targets = torch.tensor([[0.8368, 2.1210, 0.7736],
                                          [0.8105, 1.7683, 0.7421],
                                          [0.8789, 2.3052, 0.8000]])
    expected_dir_class_target = torch.tensor([9, 9, 9])
    expected_dir_res_target = torch.tensor([0.0394, -0.3172, 0.2199])
    assert torch.allclose(center_targets, expected_center_target, atol=1e-4)
    assert torch.allclose(size_targets, expected_size_targets, atol=1e-4)
    assert torch.all(dir_class_targets == expected_dir_class_target)
    assert torch.allclose(dir_res_targets, expected_dir_res_target, atol=1e-3)

    # test decode
    center = torch.tensor([[[14.5954, 6.3312, 0.7671],
                            [67.5245, 22.4422, 1.5610],
                            [47.7693, -6.7980, 1.4395]]])

    size_res = torch.tensor([[[-1.0752, 1.8760, 0.7715],
                              [-0.8016, 1.1754, 0.0102],
                              [-1.2789, 0.5948, 0.4728]]])

    dir_class = torch.tensor([[[
        0.1512, 1.7914, -1.7658, 2.1572, -0.9215, 1.2139, 0.1749, 0.8606,
        1.1743, -0.7679, -1.6005, 0.4623
    ],
                               [
                                   -0.3957, 1.2026, -1.2677, 1.3863, -0.5754,
                                   1.7083, 0.2601, 0.1129, 0.7146, -0.1367,
                                   -1.2892, -0.0083
                               ],
                               [
                                   -0.8862, 1.2050, -1.3881, 1.6604, -0.9087,
                                   1.1907, -0.0280, 0.2027, 1.0644, -0.7205,
                                   -1.0738, 0.4748
                               ]]])

    dir_res = torch.tensor([[[
        1.1151, 0.5535, -0.2053, -0.6582, -0.1616, -0.1821, 0.4675, 0.6621,
        0.8146, -0.0448, -0.7253, -0.7171
    ],
                             [
                                 0.7888, 0.2478, -0.1962, -0.7267, 0.0573,
                                 -0.2398, 0.6984, 0.5859, 0.7507, -0.1980,
                                 -0.6538, -0.6602
                             ],
                             [
                                 0.9039, 0.6109, 0.1960, -0.5016, 0.0551,
                                 -0.4086, 0.3398, 0.2759, 0.7247, -0.0655,
                                 -0.5052, -0.9026
                             ]]])
    bbox_out = dict(
        center=center, size=size_res, dir_class=dir_class, dir_res=dir_res)

    bbox3d = box_coder.decode(bbox_out)
    expected_bbox3d = torch.tensor(
        [[[14.5954, 6.3312, 0.7671, 0.1000, 3.7521, 1.5429, 0.9126],
          [67.5245, 22.4422, 1.5610, 0.1000, 2.3508, 0.1000, 2.3782],
          [47.7693, -6.7980, 1.4395, 0.1000, 1.1897, 0.9456, 1.0692]]])
    assert torch.allclose(bbox3d, expected_bbox3d, atol=1e-4)

    # test split_pred
    cls_preds = torch.rand(2, 1, 256)
    reg_preds = torch.rand(2, 30, 256)
    base_xyz = torch.rand(2, 256, 3)
    results = box_coder.split_pred(cls_preds, reg_preds, base_xyz)
    obj_scores = results['obj_scores']
    center = results['center']
    center_offset = results['center_offset']
    dir_class = results['dir_class']
    dir_res_norm = results['dir_res_norm']
    dir_res = results['dir_res']
    size = results['size']
    assert obj_scores.shape == torch.Size([2, 1, 256])
    assert center.shape == torch.Size([2, 256, 3])
    assert center_offset.shape == torch.Size([2, 256, 3])
    assert dir_class.shape == torch.Size([2, 256, 12])
    assert dir_res_norm.shape == torch.Size([2, 256, 12])
    assert dir_res.shape == torch.Size([2, 256, 12])
    assert size.shape == torch.Size([2, 256, 3])
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357


def test_centerpoint_bbox_coder():
    bbox_coder_cfg = dict(
        type='CenterPointBBoxCoder',
        post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_num=500,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=4,
        voxel_size=[0.2, 0.2])

    bbox_coder = build_bbox_coder(bbox_coder_cfg)

    batch_dim = torch.rand([2, 3, 128, 128])
    batch_hei = torch.rand([2, 1, 128, 128])
    batch_hm = torch.rand([2, 2, 128, 128])
    batch_reg = torch.rand([2, 2, 128, 128])
    batch_rotc = torch.rand([2, 1, 128, 128])
    batch_rots = torch.rand([2, 1, 128, 128])
    batch_vel = torch.rand([2, 2, 128, 128])

    temp = bbox_coder.decode(batch_hm, batch_rots, batch_rotc, batch_hei,
                             batch_dim, batch_vel, batch_reg, 5)
    for i in range(len(temp)):
        assert temp[i]['bboxes'].shape == torch.Size([500, 9])
        assert temp[i]['scores'].shape == torch.Size([500])
        assert temp[i]['labels'].shape == torch.Size([500])
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387


def test_point_xyzwhlr_bbox_coder():
    bbox_coder_cfg = dict(
        type='PointXYZWHLRBBoxCoder',
        use_mean_size=True,
        mean_size=[[3.9, 1.6, 1.56], [0.8, 0.6, 1.73], [1.76, 0.6, 1.73]])
    boxcoder = build_bbox_coder(bbox_coder_cfg)

    # test encode
    gt_bboxes_3d = torch.tensor(
        [[13.3329, 2.3514, -0.7004, 1.7508, 0.4702, 1.7909, -3.0522],
         [2.2068, -2.6994, -0.3277, 3.8703, 1.6602, 1.6913, -1.9057],
         [5.5269, 2.5085, -1.0129, 1.1496, 0.8006, 1.8887, 2.1756]])

    points = torch.tensor([[13.70, 2.40, 0.12], [3.20, -3.00, 0.2],
                           [5.70, 2.20, -0.4]])

    gt_labels_3d = torch.tensor([2, 0, 1])

    bbox_target = boxcoder.encode(gt_bboxes_3d, points, gt_labels_3d)
    expected_bbox_target = torch.tensor([[
        -0.1974, -0.0261, -0.4742, -0.0052, -0.2438, 0.0346, -0.9960, -0.0893
    ], [-0.2356, 0.0713, -0.3383, -0.0076, 0.0369, 0.0808, -0.3287, -0.9444
        ], [-0.1731, 0.3085, -0.3543, 0.3626, 0.2884, 0.0878, -0.5686,
            0.8226]])
    assert torch.allclose(expected_bbox_target, bbox_target, atol=1e-4)
    # test decode
    bbox3d_out = boxcoder.decode(bbox_target, points, gt_labels_3d)
    assert torch.allclose(bbox3d_out, gt_bboxes_3d, atol=1e-4)
Tai-Wang's avatar
Tai-Wang committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401


def test_fcos3d_bbox_coder():
    # test a config without priors
    bbox_coder_cfg = dict(
        type='FCOS3DBBoxCoder',
        base_depths=None,
        base_dims=None,
        code_size=7,
        norm_on_bbox=True)
    bbox_coder = build_bbox_coder(bbox_coder_cfg)

    # test decode
    # [2, 7, 1, 1]
Tai-Wang's avatar
Tai-Wang committed
402
403
404
405
    batch_bbox = torch.tensor([[[[0.3130]], [[0.7094]], [[0.8743]], [[0.0570]],
                                [[0.5579]], [[0.1593]], [[0.4553]]],
                               [[[0.7758]], [[0.2298]], [[0.3925]], [[0.6307]],
                                [[0.4377]], [[0.3339]], [[0.1966]]]])
Tai-Wang's avatar
Tai-Wang committed
406
407
408
409
    batch_scale = nn.ModuleList([Scale(1.0) for _ in range(3)])
    stride = 2
    training = False
    cls_score = torch.randn([2, 2, 1, 1]).sigmoid()
Tai-Wang's avatar
Tai-Wang committed
410
411
    decode_bbox = bbox_coder.decode(batch_bbox, batch_scale, stride, training,
                                    cls_score)
Tai-Wang's avatar
Tai-Wang committed
412

Tai-Wang's avatar
Tai-Wang committed
413
414
415
416
417
418
419
    expected_bbox = torch.tensor([[[[0.6261]], [[1.4188]], [[2.3971]],
                                   [[1.0586]], [[1.7470]], [[1.1727]],
                                   [[0.4553]]],
                                  [[[1.5516]], [[0.4596]], [[1.4806]],
                                   [[1.8790]], [[1.5492]], [[1.3965]],
                                   [[0.1966]]]])
    assert torch.allclose(decode_bbox, expected_bbox, atol=1e-3)
Tai-Wang's avatar
Tai-Wang committed
420
421
422
423
424
425
426
427
428
429
430

    # test a config with priors
    prior_bbox_coder_cfg = dict(
        type='FCOS3DBBoxCoder',
        base_depths=((28., 13.), (25., 12.)),
        base_dims=((2., 3., 1.), (1., 2., 3.)),
        code_size=7,
        norm_on_bbox=True)
    prior_bbox_coder = build_bbox_coder(prior_bbox_coder_cfg)

    # test decode
Tai-Wang's avatar
Tai-Wang committed
431
432
433
434
    batch_bbox = torch.tensor([[[[0.3130]], [[0.7094]], [[0.8743]], [[0.0570]],
                                [[0.5579]], [[0.1593]], [[0.4553]]],
                               [[[0.7758]], [[0.2298]], [[0.3925]], [[0.6307]],
                                [[0.4377]], [[0.3339]], [[0.1966]]]])
Tai-Wang's avatar
Tai-Wang committed
435
436
437
438
439
    batch_scale = nn.ModuleList([Scale(1.0) for _ in range(3)])
    stride = 2
    training = False
    cls_score = torch.tensor([[[[0.5811]], [[0.6198]]], [[[0.4889]],
                                                         [[0.8142]]]])
Tai-Wang's avatar
Tai-Wang committed
440
441
442
443
444
445
446
447
448
    decode_bbox = prior_bbox_coder.decode(batch_bbox, batch_scale, stride,
                                          training, cls_score)
    expected_bbox = torch.tensor([[[[0.6260]], [[1.4188]], [[35.4916]],
                                   [[1.0587]], [[3.4940]], [[3.5181]],
                                   [[0.4553]]],
                                  [[[1.5516]], [[0.4596]], [[29.7100]],
                                   [[1.8789]], [[3.0983]], [[4.1892]],
                                   [[0.1966]]]])
    assert torch.allclose(decode_bbox, expected_bbox, atol=1e-3)
Tai-Wang's avatar
Tai-Wang committed
449
450

    # test decode_yaw
Tai-Wang's avatar
Tai-Wang committed
451
    decode_bbox = decode_bbox.permute(0, 2, 3, 1).view(-1, 7)
Tai-Wang's avatar
Tai-Wang committed
452
453
454
455
456
    batch_centers2d = torch.tensor([[100., 150.], [200., 100.]])
    batch_dir_cls = torch.tensor([0., 1.])
    dir_offset = 0.7854
    cam2img = torch.tensor([[700., 0., 450., 0.], [0., 700., 200., 0.],
                            [0., 0., 1., 0.], [0., 0., 0., 1.]])
Tai-Wang's avatar
Tai-Wang committed
457
458
459
460
    decode_bbox = prior_bbox_coder.decode_yaw(decode_bbox, batch_centers2d,
                                              batch_dir_cls, dir_offset,
                                              cam2img)
    expected_bbox = torch.tensor(
Tai-Wang's avatar
Tai-Wang committed
461
462
        [[0.6260, 1.4188, 35.4916, 1.0587, 3.4940, 3.5181, 3.1332],
         [1.5516, 0.4596, 29.7100, 1.8789, 3.0983, 4.1892, 6.1368]])
Tai-Wang's avatar
Tai-Wang committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    assert torch.allclose(decode_bbox, expected_bbox, atol=1e-3)


def test_pgd_bbox_coder():
    # test a config without priors
    bbox_coder_cfg = dict(
        type='PGDBBoxCoder',
        base_depths=None,
        base_dims=None,
        code_size=7,
        norm_on_bbox=True)
    bbox_coder = build_bbox_coder(bbox_coder_cfg)

    # test decode_2d
    # [2, 27, 1, 1]
    batch_bbox = torch.tensor([[[[0.0103]], [[0.7394]], [[0.3296]], [[0.4708]],
                                [[0.1439]], [[0.0778]], [[0.9399]], [[0.8366]],
                                [[0.1264]], [[0.3030]], [[0.1898]], [[0.0714]],
                                [[0.4144]], [[0.4341]], [[0.6442]], [[0.2951]],
                                [[0.2890]], [[0.4486]], [[0.2848]], [[0.1071]],
                                [[0.9530]], [[0.9460]], [[0.3822]], [[0.9320]],
                                [[0.2611]], [[0.5580]], [[0.0397]]],
                               [[[0.8612]], [[0.1680]], [[0.5167]], [[0.8502]],
                                [[0.0377]], [[0.3615]], [[0.9550]], [[0.5219]],
                                [[0.1402]], [[0.6843]], [[0.2121]], [[0.9468]],
                                [[0.6238]], [[0.7918]], [[0.1646]], [[0.0500]],
                                [[0.6290]], [[0.3956]], [[0.2901]], [[0.4612]],
                                [[0.7333]], [[0.1194]], [[0.6999]], [[0.3980]],
                                [[0.3262]], [[0.7185]], [[0.4474]]]])
    batch_scale = nn.ModuleList([Scale(1.0) for _ in range(5)])
    stride = 2
    training = False
    cls_score = torch.randn([2, 2, 1, 1]).sigmoid()
    decode_bbox = bbox_coder.decode(batch_bbox, batch_scale, stride, training,
                                    cls_score)
    max_regress_range = 16
    pred_keypoints = True
    pred_bbox2d = True
    decode_bbox_w2d = bbox_coder.decode_2d(decode_bbox, batch_scale, stride,
                                           max_regress_range, training,
                                           pred_keypoints, pred_bbox2d)
    expected_decode_bbox_w2d = torch.tensor(
        [[[[0.0206]], [[1.4788]], [[1.3904]], [[1.6013]], [[1.1548]],
          [[1.0809]], [[0.9399]], [[13.3856]], [[2.0224]], [[4.8480]],
          [[3.0368]], [[1.1424]], [[6.6304]], [[6.9456]], [[10.3072]],
          [[4.7216]], [[4.6240]], [[7.1776]], [[4.5568]], [[1.7136]],
          [[15.2480]], [[15.1360]], [[6.1152]], [[1.8640]], [[0.5222]],
          [[1.1160]], [[0.0794]]],
         [[[1.7224]], [[0.3360]], [[1.6765]], [[2.3401]], [[1.0384]],
          [[1.4355]], [[0.9550]], [[8.3504]], [[2.2432]], [[10.9488]],
          [[3.3936]], [[15.1488]], [[9.9808]], [[12.6688]], [[2.6336]],
          [[0.8000]], [[10.0640]], [[6.3296]], [[4.6416]], [[7.3792]],
          [[11.7328]], [[1.9104]], [[11.1984]], [[0.7960]], [[0.6524]],
          [[1.4370]], [[0.8948]]]])
    assert torch.allclose(expected_decode_bbox_w2d, decode_bbox_w2d, atol=1e-3)

    # test decode_prob_depth
    # [10, 8]
    depth_cls_preds = torch.tensor([
        [-0.4383, 0.7207, -0.4092, 0.4649, 0.8526, 0.6186, -1.4312, -0.7150],
        [0.0621, 0.2369, 0.5170, 0.8484, -0.1099, 0.1829, -0.0072, 1.0618],
        [-1.6114, -0.1057, 0.5721, -0.5986, -2.0471, 0.8140, -0.8385, -0.4822],
        [0.0742, -0.3261, 0.4607, 1.8155, -0.3571, -0.0234, 0.3787, 2.3251],
        [1.0492, -0.6881, -0.0136, -1.8291, 0.8460, -1.0171, 2.5691, -0.8114],
        [0.0968, -0.5601, 1.0458, 0.2560, 1.3018, 0.1635, 0.0680, -1.0263],
        [-0.0765, 0.1498, -2.7321, 1.0047, -0.2505, 0.0871, -0.4820, -0.3003],
        [-0.4123, 0.2298, -0.1330, -0.6008, 0.6526, 0.7118, 0.9728, -0.7793],
        [1.6940, 0.3355, 1.4661, 0.5477, 0.8667, 0.0527, -0.9975, -0.0689],
        [0.4724, -0.3632, -0.0654, 0.4034, -0.3494, -0.7548, 0.7297, 1.2754]
    ])
    depth_range = (0, 70)
    depth_unit = 10
    num_depth_cls = 8
    uniform_prob_depth_preds = bbox_coder.decode_prob_depth(
        depth_cls_preds, depth_range, depth_unit, 'uniform', num_depth_cls)
    expected_preds = torch.tensor([
        32.0441, 38.4689, 36.1831, 48.2096, 46.1560, 32.7973, 33.2155, 39.9822,
        21.9905, 43.0161
    ])
    assert torch.allclose(uniform_prob_depth_preds, expected_preds, atol=1e-3)

    linear_prob_depth_preds = bbox_coder.decode_prob_depth(
        depth_cls_preds, depth_range, depth_unit, 'linear', num_depth_cls)
    expected_preds = torch.tensor([
        21.1431, 30.2421, 25.8964, 41.6116, 38.6234, 21.4582, 23.2993, 30.1111,
        13.9273, 36.8419
    ])
    assert torch.allclose(linear_prob_depth_preds, expected_preds, atol=1e-3)

    log_prob_depth_preds = bbox_coder.decode_prob_depth(
        depth_cls_preds, depth_range, depth_unit, 'log', num_depth_cls)
    expected_preds = torch.tensor([
        12.6458, 24.2487, 17.4015, 36.9375, 27.5982, 12.5510, 15.6635, 19.8408,
        9.1605, 31.3765
    ])
    assert torch.allclose(log_prob_depth_preds, expected_preds, atol=1e-3)

    loguniform_prob_depth_preds = bbox_coder.decode_prob_depth(
        depth_cls_preds, depth_range, depth_unit, 'loguniform', num_depth_cls)
    expected_preds = torch.tensor([
        6.9925, 10.3273, 8.9895, 18.6524, 16.4667, 7.3196, 7.5078, 11.3207,
        3.7987, 13.6095
    ])
    assert torch.allclose(
        loguniform_prob_depth_preds, expected_preds, atol=1e-3)
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598


def test_smoke_bbox_coder():
    bbox_coder_cfg = dict(
        type='SMOKECoder',
        base_depth=(28.01, 16.32),
        base_dims=((3.88, 1.63, 1.53), (1.78, 1.70, 0.58), (0.88, 1.73, 0.67)),
        code_size=7)

    bbox_coder = build_bbox_coder(bbox_coder_cfg)
    regression = torch.rand([200, 8])
    points = torch.rand([200, 2])
    labels = torch.ones([2, 100])
    cam2imgs = torch.rand([2, 4, 4])
    trans_mats = torch.rand([2, 3, 3])

    img_metas = [dict(box_type_3d=CameraInstance3DBoxes) for i in range(2)]
    locations, dimensions, orientations = bbox_coder.decode(
        regression, points, labels, cam2imgs, trans_mats)
    assert locations.shape == torch.Size([200, 3])
    assert dimensions.shape == torch.Size([200, 3])
    assert orientations.shape == torch.Size([200, 1])
    bboxes = bbox_coder.encode(locations, dimensions, orientations, img_metas)
    assert bboxes.tensor.shape == torch.Size([200, 7])

    # specically designed to test orientation decode function's
    # special cases.
    ori_vector = torch.tensor([[-0.9, -0.01], [-0.9, 0.01]])
    locations = torch.tensor([[15., 2., 1.], [15., 2., -1.]])
    orientations = bbox_coder._decode_orientation(ori_vector, locations)
    assert orientations.shape == torch.Size([2, 1])