groupfree3d_head.py 46.7 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
hjin2902's avatar
hjin2902 committed
2
import copy
jshilong's avatar
jshilong committed
3
from typing import Dict, List, Optional, Tuple
4

hjin2902's avatar
hjin2902 committed
5
6
import numpy as np
import torch
7
from mmcv.cnn import ConvModule
hjin2902's avatar
hjin2902 committed
8
9
from mmcv.cnn.bricks.transformer import (build_positional_encoding,
                                         build_transformer_layer)
10
11
from mmcv.ops import PointsSampler as Points_Sampler
from mmcv.ops import gather_points
jshilong's avatar
jshilong committed
12
from mmengine import InstanceData
13
14
from mmengine.model import BaseModule
from mmengine.model.utils import xavier_init
jshilong's avatar
jshilong committed
15
from torch import Tensor
hjin2902's avatar
hjin2902 committed
16
17
18
from torch import nn as nn
from torch.nn import functional as F

zhangshilong's avatar
zhangshilong committed
19
20
21
22
23
from mmdet3d.models.layers import aligned_3d_nms
from mmdet3d.registry import MODELS, TASK_UTILS
from mmdet3d.structures import BaseInstance3DBoxes, Det3DDataSample
from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet.models.utils import multi_apply
hjin2902's avatar
hjin2902 committed
24
25
26
27
28
from .base_conv_bbox_head import BaseConvBboxHead

EPS = 1e-6


29
class PointsObjClsModule(BaseModule):
hjin2902's avatar
hjin2902 committed
30
31
32
33
    """object candidate point prediction from seed point features.

    Args:
        in_channel (int): number of channels of seed point features.
34
        num_convs (int, optional): number of conv layers.
hjin2902's avatar
hjin2902 committed
35
            Default: 3.
36
        conv_cfg (dict, optional): Config of convolution.
hjin2902's avatar
hjin2902 committed
37
            Default: dict(type='Conv1d').
38
        norm_cfg (dict, optional): Config of normalization.
hjin2902's avatar
hjin2902 committed
39
            Default: dict(type='BN1d').
40
        act_cfg (dict, optional): Config of activation.
hjin2902's avatar
hjin2902 committed
41
42
43
44
            Default: dict(type='ReLU').
    """

    def __init__(self,
jshilong's avatar
jshilong committed
45
46
47
48
49
50
                 in_channel: int,
                 num_convs: int = 3,
                 conv_cfg: dict = dict(type='Conv1d'),
                 norm_cfg: dict = dict(type='BN1d'),
                 act_cfg: dict = dict(type='ReLU'),
                 init_cfg: Optional[dict] = None):
51
        super().__init__(init_cfg=init_cfg)
hjin2902's avatar
hjin2902 committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        conv_channels = [in_channel for _ in range(num_convs - 1)]
        conv_channels.append(1)

        self.mlp = nn.Sequential()
        prev_channels = in_channel
        for i in range(num_convs):
            self.mlp.add_module(
                f'layer{i}',
                ConvModule(
                    prev_channels,
                    conv_channels[i],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg if i < num_convs - 1 else None,
                    act_cfg=act_cfg if i < num_convs - 1 else None,
                    bias=True,
                    inplace=True))
            prev_channels = conv_channels[i]

    def forward(self, seed_features):
        """Forward pass.

        Args:
            seed_features (torch.Tensor): seed features, dims:
                (batch_size, feature_dim, num_seed)

        Returns:
            torch.Tensor: objectness logits, dim:
                (batch_size, 1, num_seed)
        """
        return self.mlp(seed_features)


class GeneralSamplingModule(nn.Module):
    """Sampling Points.

    Sampling points with given index.
    """

jshilong's avatar
jshilong committed
92
93
    def forward(self, xyz: Tensor, features: Tensor,
                sample_inds: Tensor) -> Tuple[Tensor]:
hjin2902's avatar
hjin2902 committed
94
95
96
        """Forward pass.

        Args:
jshilong's avatar
jshilong committed
97
            xyz (Tensor): (B, N, 3) the coordinates of the features.
hjin2902's avatar
hjin2902 committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            features (Tensor): (B, C, N) features to sample.
            sample_inds (Tensor): (B, M) the given index,
                where M is the number of points.

        Returns:
            Tensor: (B, M, 3) coordinates of sampled features
            Tensor: (B, C, M) the sampled features.
            Tensor: (B, M) the given index.
        """
        xyz_t = xyz.transpose(1, 2).contiguous()
        new_xyz = gather_points(xyz_t, sample_inds).transpose(1,
                                                              2).contiguous()
        new_features = gather_points(features, sample_inds).contiguous()

        return new_xyz, new_features, sample_inds


115
@MODELS.register_module()
116
class GroupFree3DHead(BaseModule):
hjin2902's avatar
hjin2902 committed
117
118
119
120
121
122
123
124
125
    r"""Bbox head of `Group-Free 3D <https://arxiv.org/abs/2104.00678>`_.

    Args:
        num_classes (int): The number of class.
        in_channels (int): The dims of input features from backbone.
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        num_decoder_layers (int): The number of transformer decoder layers.
        transformerlayers (dict): Config for transformer decoder.
jshilong's avatar
jshilong committed
126
127
        train_cfg (dict, optional): Config for training.
        test_cfg (dict, optional): Config for testing.
hjin2902's avatar
hjin2902 committed
128
        num_proposal (int): The number of initial sampling candidates.
jshilong's avatar
jshilong committed
129
        pred_layer_cfg (dict, optional): Config of classfication and regression
hjin2902's avatar
hjin2902 committed
130
131
132
133
            prediction layers.
        size_cls_agnostic (bool): Whether the predicted size is class-agnostic.
        gt_per_seed (int): the number of candidate instance each point belongs
            to.
jshilong's avatar
jshilong committed
134
        sampling_objectness_loss (dict, optional): Config of initial sampling
hjin2902's avatar
hjin2902 committed
135
            objectness loss.
jshilong's avatar
jshilong committed
136
137
138
139
140
141
142
143
144
145
146
147
148
        objectness_loss (dict, optional): Config of objectness loss.
        center_loss (dict, optional): Config of center loss.
        dir_class_loss (dict, optional): Config of direction classification
            loss.
        dir_res_loss (dict, optional): Config of direction residual
            regression loss.
        size_class_loss (dict, optional): Config of size classification loss.
        size_res_loss (dict, optional): Config of size residual
            regression loss.
        size_reg_loss (dict, optional): Config of class-agnostic size
            regression loss.
        semantic_loss (dict, optional): Config of point-wise semantic
            segmentation loss.
hjin2902's avatar
hjin2902 committed
149
150
151
    """

    def __init__(self,
jshilong's avatar
jshilong committed
152
153
154
155
156
157
                 num_classes: int,
                 in_channels: int,
                 bbox_coder: dict,
                 num_decoder_layers: int,
                 transformerlayers: dict,
                 decoder_self_posembeds: dict = dict(
hjin2902's avatar
hjin2902 committed
158
159
160
                     type='ConvBNPositionalEncoding',
                     input_channel=6,
                     num_pos_feats=288),
jshilong's avatar
jshilong committed
161
                 decoder_cross_posembeds: dict = dict(
hjin2902's avatar
hjin2902 committed
162
163
164
                     type='ConvBNPositionalEncoding',
                     input_channel=3,
                     num_pos_feats=288),
jshilong's avatar
jshilong committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 num_proposal: int = 128,
                 pred_layer_cfg: Optional[dict] = None,
                 size_cls_agnostic: bool = True,
                 gt_per_seed: int = 3,
                 sampling_objectness_loss: Optional[dict] = None,
                 objectness_loss: Optional[dict] = None,
                 center_loss: Optional[dict] = None,
                 dir_class_loss: Optional[dict] = None,
                 dir_res_loss: Optional[dict] = None,
                 size_class_loss: Optional[dict] = None,
                 size_res_loss: Optional[dict] = None,
                 size_reg_loss: Optional[dict] = None,
                 semantic_loss: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
181
        super(GroupFree3DHead, self).__init__(init_cfg=init_cfg)
hjin2902's avatar
hjin2902 committed
182
183
184
185
186
187
188
189
190
191
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.num_proposal = num_proposal
        self.in_channels = in_channels
        self.num_decoder_layers = num_decoder_layers
        self.size_cls_agnostic = size_cls_agnostic
        self.gt_per_seed = gt_per_seed

        # Transformer decoder layers
jshilong's avatar
jshilong committed
192
        if isinstance(transformerlayers, dict):
hjin2902's avatar
hjin2902 committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
            transformerlayers = [
                copy.deepcopy(transformerlayers)
                for _ in range(num_decoder_layers)
            ]
        else:
            assert isinstance(transformerlayers, list) and \
                   len(transformerlayers) == num_decoder_layers
        self.decoder_layers = nn.ModuleList()
        for i in range(self.num_decoder_layers):
            self.decoder_layers.append(
                build_transformer_layer(transformerlayers[i]))
        self.embed_dims = self.decoder_layers[0].embed_dims
        assert self.embed_dims == decoder_self_posembeds['num_pos_feats']
        assert self.embed_dims == decoder_cross_posembeds['num_pos_feats']

        # bbox_coder
zhangshilong's avatar
zhangshilong committed
209
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
hjin2902's avatar
hjin2902 committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

        # Initial object candidate sampling
        self.gsample_module = GeneralSamplingModule()
        self.fps_module = Points_Sampler([self.num_proposal])
        self.points_obj_cls = PointsObjClsModule(self.in_channels)

        self.fp16_enabled = False

        # initial candidate prediction
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

        # query proj and key proj
        self.decoder_query_proj = nn.Conv1d(
            self.embed_dims, self.embed_dims, kernel_size=1)
        self.decoder_key_proj = nn.Conv1d(
            self.embed_dims, self.embed_dims, kernel_size=1)

        # query position embed
        self.decoder_self_posembeds = nn.ModuleList()
        for _ in range(self.num_decoder_layers):
            self.decoder_self_posembeds.append(
                build_positional_encoding(decoder_self_posembeds))
        # key position embed
        self.decoder_cross_posembeds = nn.ModuleList()
        for _ in range(self.num_decoder_layers):
            self.decoder_cross_posembeds.append(
                build_positional_encoding(decoder_cross_posembeds))

        # Prediction Head
        self.prediction_heads = nn.ModuleList()
        for i in range(self.num_decoder_layers):
            self.prediction_heads.append(
                BaseConvBboxHead(
                    **pred_layer_cfg,
                    num_cls_out_channels=self._get_cls_out_channels(),
                    num_reg_out_channels=self._get_reg_out_channels()))

jshilong's avatar
jshilong committed
252
253
254
255
256
257
        self.loss_sampling_objectness = MODELS.build(sampling_objectness_loss)
        self.loss_objectness = MODELS.build(objectness_loss)
        self.loss_center = MODELS.build(center_loss)
        self.loss_dir_res = MODELS.build(dir_res_loss)
        self.loss_dir_class = MODELS.build(dir_class_loss)
        self.loss_semantic = MODELS.build(semantic_loss)
hjin2902's avatar
hjin2902 committed
258
        if self.size_cls_agnostic:
jshilong's avatar
jshilong committed
259
            self.loss_size_reg = MODELS.build(size_reg_loss)
hjin2902's avatar
hjin2902 committed
260
        else:
jshilong's avatar
jshilong committed
261
262
            self.loss_size_res = MODELS.build(size_res_loss)
            self.loss_size_class = MODELS.build(size_class_loss)
hjin2902's avatar
hjin2902 committed
263
264
265
266
267
268

    def init_weights(self):
        """Initialize weights of transformer decoder in GroupFree3DHead."""
        # initialize transformer
        for m in self.decoder_layers.parameters():
            if m.dim() > 1:
269
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
270
271
        for m in self.decoder_self_posembeds.parameters():
            if m.dim() > 1:
272
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
273
274
        for m in self.decoder_cross_posembeds.parameters():
            if m.dim() > 1:
275
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (1)
        return self.num_classes + 1

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
        # center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4 or 3)
        if self.size_cls_agnostic:
            return 6 + self.num_dir_bins * 2
        else:
            return 3 + self.num_dir_bins * 2 + self.num_sizes * 4

jshilong's avatar
jshilong committed
292
    def _extract_input(self, feat_dict: dict) -> Tuple[Tensor]:
hjin2902's avatar
hjin2902 committed
293
294
295
296
297
298
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
jshilong's avatar
jshilong committed
299
300
301
302
303
            Tuple[Tensor]:

            - seed_points (Tensor): Coordinates of input points.
            - seed_features (Tensor): Features of input points.
            - seed_indices (Tensor): Indices of input points.
hjin2902's avatar
hjin2902 committed
304
305
306
307
308
309
310
311
        """

        seed_points = feat_dict['fp_xyz'][-1]
        seed_features = feat_dict['fp_features'][-1]
        seed_indices = feat_dict['fp_indices'][-1]

        return seed_points, seed_features, seed_indices

jshilong's avatar
jshilong committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    @property
    def sample_mode(self):
        """
        Returns:
            str: Sample mode for initial candidates sampling.
        """
        if self.training:
            sample_mode = self.train_cfg.sample_mode
        else:
            sample_mode = self.test_cfg.sample_mode
        assert sample_mode in ['fps', 'kps']
        return sample_mode

    def forward(self, feat_dict: dict) -> dict:
hjin2902's avatar
hjin2902 committed
326
327
328
        """Forward pass.

        Note:
329
            The forward of GroupFree3DHead is divided into 2 steps:
hjin2902's avatar
hjin2902 committed
330
331
332
333
334
335

                1. Initial object candidates sampling.
                2. Iterative object box prediction by transformer decoder.

        Args:
            feat_dict (dict): Feature dict from backbone.
jshilong's avatar
jshilong committed
336

hjin2902's avatar
hjin2902 committed
337
338
339
340

        Returns:
            results (dict): Predictions of GroupFree3D head.
        """
jshilong's avatar
jshilong committed
341
        sample_mode = self.sample_mode
hjin2902's avatar
hjin2902 committed
342
343
344
345
346
347
348
349
350

        seed_xyz, seed_features, seed_indices = self._extract_input(feat_dict)

        results = dict(
            seed_points=seed_xyz,
            seed_features=seed_features,
            seed_indices=seed_indices)

        # 1. Initial object candidates sampling.
jshilong's avatar
jshilong committed
351
        if sample_mode == 'fps':
hjin2902's avatar
hjin2902 committed
352
            sample_inds = self.fps_module(seed_xyz, seed_features)
jshilong's avatar
jshilong committed
353
        elif sample_mode == 'kps':
hjin2902's avatar
hjin2902 committed
354
355
356
357
358
359
360
361
            points_obj_cls_logits = self.points_obj_cls(
                seed_features)  # (batch_size, 1, num_seed)
            points_obj_cls_scores = points_obj_cls_logits.sigmoid().squeeze(1)
            sample_inds = torch.topk(points_obj_cls_scores,
                                     self.num_proposal)[1].int()
            results['seeds_obj_cls_logits'] = points_obj_cls_logits
        else:
            raise NotImplementedError(
jshilong's avatar
jshilong committed
362
                f'Sample mode {sample_mode} is not supported!')
hjin2902's avatar
hjin2902 committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        candidate_xyz, candidate_features, sample_inds = self.gsample_module(
            seed_xyz, seed_features, sample_inds)

        results['query_points_xyz'] = candidate_xyz  # (B, M, 3)
        results['query_points_feature'] = candidate_features  # (B, C, M)
        results['query_points_sample_inds'] = sample_inds.long()  # (B, M)

        prefix = 'proposal.'
        cls_predictions, reg_predictions = self.conv_pred(candidate_features)
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions, candidate_xyz,
                                                prefix)

        results.update(decode_res)
        bbox3d = self.bbox_coder.decode(results, prefix)

        # 2. Iterative object box prediction by transformer decoder.
        base_bbox3d = bbox3d[:, :, :6].detach().clone()

        query = self.decoder_query_proj(candidate_features).permute(2, 0, 1)
        key = self.decoder_key_proj(seed_features).permute(2, 0, 1)
        value = key

        # transformer decoder
        results['num_decoder_layers'] = 0
        for i in range(self.num_decoder_layers):
            prefix = f's{i}.'

            query_pos = self.decoder_self_posembeds[i](base_bbox3d).permute(
                2, 0, 1)
            key_pos = self.decoder_cross_posembeds[i](seed_xyz).permute(
                2, 0, 1)

            query = self.decoder_layers[i](
                query, key, value, query_pos=query_pos,
                key_pos=key_pos).permute(1, 2, 0)

            results[f'{prefix}query'] = query

            cls_predictions, reg_predictions = self.prediction_heads[i](query)
            decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                    reg_predictions,
                                                    candidate_xyz, prefix)
            # TODO: should save bbox3d instead of decode_res?
            results.update(decode_res)

            bbox3d = self.bbox_coder.decode(results, prefix)
            results[f'{prefix}bbox3d'] = bbox3d
            base_bbox3d = bbox3d[:, :, :6].detach().clone()
            query = query.permute(2, 0, 1)

            results['num_decoder_layers'] += 1

        return results

jshilong's avatar
jshilong committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    def loss(self, points: List[torch.Tensor], feats_dict: Dict[str,
                                                                torch.Tensor],
             batch_data_samples: SampleList, **kwargs) -> dict:
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.

        Returns:
            dict:  A dictionary of loss components.
        """
        preds_dict = self.forward(feats_dict)
        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
            batch_pts_instance_mask.append(
                data_sample.gt_pts_seg.get('pts_instance_mask', None))

        loss_inputs = (points, preds_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_input_metas=batch_input_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        return losses

    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            feats_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            ret_target: bool = False,
            **kwargs) -> dict:
hjin2902's avatar
hjin2902 committed
467
468
469
470
        """Compute loss.

        Args:
            points (list[torch.Tensor]): Input points.
jshilong's avatar
jshilong committed
471
472
473
474
475
476
477
478
479
            feats_dict (dict): Predictions from previous component.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and
                ``labels_3d`` attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None.
            ret_target (bool): Return targets or not. Defaults to False.
hjin2902's avatar
hjin2902 committed
480
481

        Returns:
jshilong's avatar
jshilong committed
482
            dict: Losses of `GroupFree3D`.
hjin2902's avatar
hjin2902 committed
483
        """
jshilong's avatar
jshilong committed
484
485
486
        targets = self.get_targets(points, feats_dict, batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
hjin2902's avatar
hjin2902 committed
487
488
489
490
491
492
493
494
495
496
497
        (sampling_targets, sampling_weights, assigned_size_targets,
         size_class_targets, size_res_targets, dir_class_targets,
         dir_res_targets, center_targets, assigned_center_targets,
         mask_targets, valid_gt_masks, objectness_targets, objectness_weights,
         box_loss_weights, valid_gt_weights) = targets

        batch_size, proposal_num = size_class_targets.shape[:2]

        losses = dict()

        # calculate objectness classification loss
jshilong's avatar
jshilong committed
498
499
        sampling_obj_score = feats_dict['seeds_obj_cls_logits'].reshape(-1, 1)
        sampling_objectness_loss = self.loss_sampling_objectness(
hjin2902's avatar
hjin2902 committed
500
501
502
503
504
505
506
            sampling_obj_score,
            1 - sampling_targets.reshape(-1),
            sampling_weights.reshape(-1),
            avg_factor=batch_size)
        losses['sampling_objectness_loss'] = sampling_objectness_loss

        prefixes = ['proposal.'] + [
jshilong's avatar
jshilong committed
507
            f's{i}.' for i in range(feats_dict['num_decoder_layers'])
hjin2902's avatar
hjin2902 committed
508
509
510
511
512
        ]
        num_stages = len(prefixes)
        for prefix in prefixes:

            # calculate objectness loss
jshilong's avatar
jshilong committed
513
514
            obj_score = feats_dict[f'{prefix}obj_scores'].transpose(2, 1)
            objectness_loss = self.loss_objectness(
hjin2902's avatar
hjin2902 committed
515
516
517
518
519
520
521
522
523
                obj_score.reshape(-1, 1),
                1 - objectness_targets.reshape(-1),
                objectness_weights.reshape(-1),
                avg_factor=batch_size)
            losses[f'{prefix}objectness_loss'] = objectness_loss / num_stages

            # calculate center loss
            box_loss_weights_expand = box_loss_weights.unsqueeze(-1).expand(
                -1, -1, 3)
jshilong's avatar
jshilong committed
524
525
            center_loss = self.loss_center(
                feats_dict[f'{prefix}center'],
hjin2902's avatar
hjin2902 committed
526
527
528
529
530
                assigned_center_targets,
                weight=box_loss_weights_expand)
            losses[f'{prefix}center_loss'] = center_loss / num_stages

            # calculate direction class loss
jshilong's avatar
jshilong committed
531
532
            dir_class_loss = self.loss_dir_class(
                feats_dict[f'{prefix}dir_class'].transpose(2, 1),
hjin2902's avatar
hjin2902 committed
533
534
535
536
537
538
539
540
541
542
                dir_class_targets,
                weight=box_loss_weights)
            losses[f'{prefix}dir_class_loss'] = dir_class_loss / num_stages

            # calculate direction residual loss
            heading_label_one_hot = size_class_targets.new_zeros(
                (batch_size, proposal_num, self.num_dir_bins))
            heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1),
                                           1)
            dir_res_norm = torch.sum(
jshilong's avatar
jshilong committed
543
                feats_dict[f'{prefix}dir_res_norm'] * heading_label_one_hot,
hjin2902's avatar
hjin2902 committed
544
                -1)
jshilong's avatar
jshilong committed
545
            dir_res_loss = self.loss_dir_res(
hjin2902's avatar
hjin2902 committed
546
547
548
549
550
                dir_res_norm, dir_res_targets, weight=box_loss_weights)
            losses[f'{prefix}dir_res_loss'] = dir_res_loss / num_stages

            if self.size_cls_agnostic:
                # calculate class-agnostic size loss
jshilong's avatar
jshilong committed
551
552
                size_reg_loss = self.loss_size_reg(
                    feats_dict[f'{prefix}size'],
hjin2902's avatar
hjin2902 committed
553
554
555
556
557
558
                    assigned_size_targets,
                    weight=box_loss_weights_expand)
                losses[f'{prefix}size_reg_loss'] = size_reg_loss / num_stages

            else:
                # calculate size class loss
jshilong's avatar
jshilong committed
559
560
                size_class_loss = self.loss_size_class(
                    feats_dict[f'{prefix}size_class'].transpose(2, 1),
hjin2902's avatar
hjin2902 committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                    size_class_targets,
                    weight=box_loss_weights)
                losses[
                    f'{prefix}size_class_loss'] = size_class_loss / num_stages

                # calculate size residual loss
                one_hot_size_targets = size_class_targets.new_zeros(
                    (batch_size, proposal_num, self.num_sizes))
                one_hot_size_targets.scatter_(2,
                                              size_class_targets.unsqueeze(-1),
                                              1)
                one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
                    -1).expand(-1, -1, -1, 3).contiguous()
                size_residual_norm = torch.sum(
jshilong's avatar
jshilong committed
575
                    feats_dict[f'{prefix}size_res_norm'] *
hjin2902's avatar
hjin2902 committed
576
577
578
                    one_hot_size_targets_expand, 2)
                box_loss_weights_expand = box_loss_weights.unsqueeze(
                    -1).expand(-1, -1, 3)
jshilong's avatar
jshilong committed
579
                size_res_loss = self.loss_size_res(
hjin2902's avatar
hjin2902 committed
580
581
582
583
584
585
                    size_residual_norm,
                    size_res_targets,
                    weight=box_loss_weights_expand)
                losses[f'{prefix}size_res_loss'] = size_res_loss / num_stages

            # calculate semantic loss
jshilong's avatar
jshilong committed
586
587
            semantic_loss = self.loss_semantic(
                feats_dict[f'{prefix}sem_scores'].transpose(2, 1),
hjin2902's avatar
hjin2902 committed
588
589
590
591
592
593
594
595
596
                mask_targets,
                weight=box_loss_weights)
            losses[f'{prefix}semantic_loss'] = semantic_loss / num_stages

        if ret_target:
            losses['targets'] = targets

        return losses

jshilong's avatar
jshilong committed
597
598
599
600
601
602
603
604
605
    def get_targets(
        self,
        points: List[Tensor],
        feats_dict: dict = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
        max_gt_num: int = 64,
    ):
hjin2902's avatar
hjin2902 committed
606
607
608
609
        """Generate targets of GroupFree3D head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
jshilong's avatar
jshilong committed
610
611
612
613
614
615
616
617
618
619
            feats_dict (torch.Tensor): Predictions of previous component.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and
                ``labels_3d`` attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
                 point clouds. Defaults to None.
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
                 point clouds. Defaults to None.
            max_gt_num (int): Max number of GTs for single batch. Defaults
                to 64.
hjin2902's avatar
hjin2902 committed
620
621
622
623
624
625
626

        Returns:
            tuple[torch.Tensor]: Targets of GroupFree3D head.
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
jshilong's avatar
jshilong committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]

        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)
                valid_gt_masks.append(batch_gt_labels_3d[index].new_zeros(1))
hjin2902's avatar
hjin2902 committed
645
646
                gt_num.append(1)
            else:
jshilong's avatar
jshilong committed
647
648
649
                valid_gt_masks.append(batch_gt_labels_3d[index].new_ones(
                    batch_gt_labels_3d[index].shape))
                gt_num.append(batch_gt_labels_3d[index].shape[0])
hjin2902's avatar
hjin2902 committed
650

jshilong's avatar
jshilong committed
651
        max_gt_nums = [max_gt_num for _ in range(len(batch_gt_labels_3d))]
hjin2902's avatar
hjin2902 committed
652

jshilong's avatar
jshilong committed
653
654
655
656
657
658
659
        if batch_pts_semantic_mask is None:
            batch_pts_semantic_mask = [
                None for i in range(len(batch_gt_labels_3d))
            ]
            batch_pts_instance_mask = [
                None for i in range(len(batch_gt_labels_3d))
            ]
hjin2902's avatar
hjin2902 committed
660
661

        seed_points = [
jshilong's avatar
jshilong committed
662
663
            feats_dict['seed_points'][i]
            for i in range(len(batch_gt_labels_3d))
hjin2902's avatar
hjin2902 committed
664
665
666
        ]

        seed_indices = [
jshilong's avatar
jshilong committed
667
668
            feats_dict['seed_indices'][i]
            for i in range(len(batch_gt_labels_3d))
hjin2902's avatar
hjin2902 committed
669
670
671
        ]

        candidate_indices = [
jshilong's avatar
jshilong committed
672
673
            feats_dict['query_points_sample_inds'][i]
            for i in range(len(batch_gt_labels_3d))
hjin2902's avatar
hjin2902 committed
674
675
676
677
        ]

        (sampling_targets, assigned_size_targets, size_class_targets,
         size_res_targets, dir_class_targets, dir_res_targets, center_targets,
jshilong's avatar
jshilong committed
678
679
680
681
682
683
         assigned_center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self._get_targets_single, points, batch_gt_bboxes_3d,
             batch_gt_labels_3d, batch_pts_semantic_mask,
             batch_pts_instance_mask, max_gt_nums, seed_points, seed_indices,
             candidate_indices)
hjin2902's avatar
hjin2902 committed
684
685

        # pad targets as original code of GroupFree3D.
jshilong's avatar
jshilong committed
686
687
        for index in range(len(batch_gt_labels_3d)):
            pad_num = max_gt_num - batch_gt_labels_3d[index].shape[0]
hjin2902's avatar
hjin2902 committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        sampling_targets = torch.stack(sampling_targets)
        sampling_weights = (sampling_targets >= 0).float()
        sampling_normalizer = sampling_weights.sum(dim=1, keepdim=True).float()
        sampling_weights /= sampling_normalizer.clamp(min=1.0)

        assigned_size_targets = torch.stack(assigned_size_targets)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

        assigned_center_targets = torch.stack(assigned_center_targets)
        objectness_targets = torch.stack(objectness_targets)

        objectness_weights = torch.stack(objectness_masks)
        cls_normalizer = objectness_weights.sum(dim=1, keepdim=True).float()
        objectness_weights /= cls_normalizer.clamp(min=1.0)

        box_loss_weights = objectness_targets.float() / (
            objectness_targets.sum().float() + EPS)

        valid_gt_weights = valid_gt_masks.float() / (
            valid_gt_masks.sum().float() + EPS)

        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (sampling_targets, sampling_weights, assigned_size_targets,
                size_class_targets, size_res_targets, dir_class_targets,
                dir_res_targets, center_targets, assigned_center_targets,
                mask_targets, valid_gt_masks, objectness_targets,
                objectness_weights, box_loss_weights, valid_gt_weights)

jshilong's avatar
jshilong committed
724
725
726
727
728
729
730
731
732
733
734
    def _get_targets_single(self,
                            points: Tensor,
                            gt_bboxes_3d: BaseInstance3DBoxes,
                            gt_labels_3d: Tensor,
                            pts_semantic_mask: Optional[Tensor] = None,
                            pts_instance_mask: Optional[Tensor] = None,
                            max_gt_nums: Optional[int] = None,
                            seed_points: Optional[Tensor] = None,
                            seed_indices: Optional[Tensor] = None,
                            candidate_indices: Optional[Tensor] = None,
                            seed_points_obj_topk: int = 4):
hjin2902's avatar
hjin2902 committed
735
736
737
738
        """Generate targets of GroupFree3D head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
739
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
hjin2902's avatar
hjin2902 committed
740
741
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
jshilong's avatar
jshilong committed
742
743
744
745
746
747
748
749
750
751
752
753
            pts_semantic_mask (torch.Tensor, optional): Point-wise semantic
                label of each batch. Defaults to None.
            pts_instance_mask (torch.Tensor, optional): Point-wise instance
                label of each batch. Defaults to None.
            max_gt_nums (int, optional): Max number of GTs for single batch.
                Defaults to None.
            seed_points (torch.Tensor,optional): Coordinates of seed points.
                Defaults to None.
            seed_indices (torch.Tensor,optional): Indices of seed points.
                Defaults to None.
            candidate_indices (torch.Tensor,optional): Indices of object
                candidates. Defaults to None.
hjin2902's avatar
hjin2902 committed
754
            seed_points_obj_topk (int): k value of k-Closest Points Sampling.
jshilong's avatar
jshilong committed
755
                Defaults to 4.
hjin2902's avatar
hjin2902 committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

        Returns:
            tuple[torch.Tensor]: Targets of GroupFree3D head.
        """

        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

        # generate center, dir, size target
        (center_targets, size_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        # pad targets as original code of GroupFree3D
        pad_num = max_gt_nums - gt_labels_3d.shape[0]
        box_label_mask = points.new_zeros([max_gt_nums])
        box_label_mask[:gt_labels_3d.shape[0]] = 1

        gt_bboxes_pad = F.pad(gt_bboxes_3d.tensor, (0, 0, 0, pad_num))
        gt_bboxes_pad[gt_labels_3d.shape[0]:, 0:3] += 1000
        gt_bboxes_3d = gt_bboxes_3d.new_box(gt_bboxes_pad)

        gt_labels_3d = F.pad(gt_labels_3d, (0, pad_num))

        center_targets = F.pad(center_targets, (0, 0, 0, pad_num), value=1000)
        size_targets = F.pad(size_targets, (0, 0, 0, pad_num))
        size_class_targets = F.pad(size_class_targets, (0, pad_num))
        size_res_targets = F.pad(size_res_targets, (0, 0, 0, pad_num))
        dir_class_targets = F.pad(dir_class_targets, (0, pad_num))
        dir_res_targets = F.pad(dir_res_targets, (0, pad_num))

        # 0. generate pts_instance_label and pts_obj_mask
        num_points = points.shape[0]
        pts_obj_mask = points.new_zeros([num_points], dtype=torch.long)
        pts_instance_label = points.new_zeros([num_points],
                                              dtype=torch.long) - 1

        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 4 * self.gt_per_seed])
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
797
            box_indices_all = gt_bboxes_3d.points_in_boxes_part(points)
hjin2902's avatar
hjin2902 committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            for i in range(gt_labels_3d.shape[0]):
                box_indices = box_indices_all[:, i]
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
                selected_points = points[indices]
                pts_obj_mask[indices] = 1
                vote_targets_tmp = vote_targets[indices]
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    vote_targets_tmp[column_indices,
                                     j + 3 * self.gt_per_seed] = i
                    if j == 0:
                        vote_targets_tmp[
                            column_indices, :3 *
                            self.gt_per_seed] = votes[column_indices].repeat(
                                1, self.gt_per_seed)
                        vote_targets_tmp[column_indices,
                                         3 * self.gt_per_seed:] = i

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)

            dist = points.new_zeros([num_points, self.gt_per_seed]) + 1000
            for j in range(self.gt_per_seed):
                dist[:, j] = (vote_targets[:, 3 * j:3 * j + 3]**2).sum(-1)

            instance_indices = torch.argmin(
                dist, dim=-1).unsqueeze(-1) + 3 * self.gt_per_seed
            instance_lable = torch.gather(vote_targets, 1,
                                          instance_indices).squeeze(-1)
            pts_instance_label = instance_lable.long()
            pts_instance_label[pts_obj_mask == 0] = -1

jshilong's avatar
jshilong committed
840
        elif pts_instance_mask is not None and pts_semantic_mask is not None:
hjin2902's avatar
hjin2902 committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
            for i in torch.unique(pts_instance_mask):
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)

                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])

                    delta_xyz = center - center_targets
                    instance_lable = torch.argmin((delta_xyz**2).sum(-1))
                    pts_instance_label[indices] = instance_lable
                    pts_obj_mask[indices] = 1

        else:
            raise NotImplementedError

        # 1. generate objectness targets in sampling head
        gt_num = gt_labels_3d.shape[0]
        num_seed = seed_points.shape[0]
        num_candidate = candidate_indices.shape[0]

        object_assignment = torch.gather(pts_instance_label, 0, seed_indices)
        # set background points to the last gt bbox as original code
        object_assignment[object_assignment < 0] = gt_num - 1
        object_assignment_one_hot = gt_bboxes_3d.tensor.new_zeros(
            (num_seed, gt_num))
        object_assignment_one_hot.scatter_(1, object_assignment.unsqueeze(-1),
                                           1)  # (num_seed, gt_num)

        delta_xyz = seed_points.unsqueeze(
            1) - gt_bboxes_3d.gravity_center.unsqueeze(
                0)  # (num_seed, gt_num, 3)
        delta_xyz = delta_xyz / (gt_bboxes_3d.dims.unsqueeze(0) + EPS)

        new_dist = torch.sum(delta_xyz**2, dim=-1)
        euclidean_dist1 = torch.sqrt(new_dist + EPS)
        euclidean_dist1 = euclidean_dist1 * object_assignment_one_hot + 100 * (
            1 - object_assignment_one_hot)
        # (gt_num, num_seed)
        euclidean_dist1 = euclidean_dist1.permute(1, 0)

        # gt_num x topk
        topk_inds = torch.topk(
            euclidean_dist1,
            seed_points_obj_topk,
            largest=False)[1] * box_label_mask[:, None] + \
            (box_label_mask[:, None] - 1)
        topk_inds = topk_inds.long()
        topk_inds = topk_inds.view(-1).contiguous()

        sampling_targets = torch.zeros(
            num_seed + 1, dtype=torch.long).to(points.device)
        sampling_targets[topk_inds] = 1
        sampling_targets = sampling_targets[:num_seed]
        # pts_instance_label
        objectness_label_mask = torch.gather(pts_instance_label, 0,
                                             seed_indices)  # num_seed
        sampling_targets[objectness_label_mask < 0] = 0

        # 2. objectness target
        seed_obj_gt = torch.gather(pts_obj_mask, 0, seed_indices)  # num_seed
        objectness_targets = torch.gather(seed_obj_gt, 0,
                                          candidate_indices)  # num_candidate

        # 3. box target
        seed_instance_label = torch.gather(pts_instance_label, 0,
                                           seed_indices)  # num_seed
        query_points_instance_label = torch.gather(
            seed_instance_label, 0, candidate_indices)  # num_candidate

        # Set assignment
        # (num_candidate, ) with values in 0,1,...,gt_num-1
        assignment = query_points_instance_label
        # set background points to the last gt bbox as original code
        assignment[assignment < 0] = gt_num - 1
        assignment_expand = assignment.unsqueeze(1).expand(-1, 3)

        assigned_center_targets = center_targets[assignment]
        assigned_size_targets = size_targets[assignment]

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)

        size_class_targets = size_class_targets[assignment]
        size_res_targets = \
            torch.gather(size_res_targets, 0, assignment_expand)
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
            (num_candidate, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).expand(
            -1, -1, 3)  # (num_candidate,num_size_cluster,3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment].long()

        objectness_masks = points.new_ones((num_candidate))

        return (sampling_targets, assigned_size_targets, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
                center_targets, assigned_center_targets, mask_targets,
                objectness_targets, objectness_masks)

jshilong's avatar
jshilong committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    def predict(self, points: List[torch.Tensor],
                feats_dict: Dict[str, torch.Tensor],
                batch_data_samples: List[Det3DDataSample],
                **kwargs) -> List[InstanceData]:
        """
        Args:
            points (list[tensor]): Point clouds of multiple samples.
            feats_dict (dict): Features from FPN or backbone.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes meta information of data.

        Returns:
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData contains 3d Bounding boxes and corresponding
            scores and labels.
        """
        preds_dict = self(feats_dict)
        batch_size = len(batch_data_samples)
        batch_input_metas = []
        for batch_index in range(batch_size):
            metainfo = batch_data_samples[batch_index].metainfo
            batch_input_metas.append(metainfo)

        results_list = self.predict_by_feat(points, preds_dict,
                                            batch_input_metas, **kwargs)
        return results_list

    def predict_by_feat(self,
                        points: List[torch.Tensor],
                        bbox_preds_dict: dict,
                        batch_input_metas: List[dict],
                        use_nms: bool = True,
                        **kwargs) -> List[InstanceData]:
        """Generate bboxes from vote head predictions.
hjin2902's avatar
hjin2902 committed
982
983

        Args:
jshilong's avatar
jshilong committed
984
985
986
987
            points (List[torch.Tensor]): Input points of multiple samples.
            bbox_preds_dict (dict): Predictions from groupfree3d head.
            batch_input_metas (list[dict]): Each item
                contains the meta information of each sample.
hjin2902's avatar
hjin2902 committed
988
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
jshilong's avatar
jshilong committed
989
                while using vote head in rpn stage.
hjin2902's avatar
hjin2902 committed
990
991

        Returns:
jshilong's avatar
jshilong committed
992
993
994
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData cantains 3d Bounding boxes and corresponding
            scores and labels.
hjin2902's avatar
hjin2902 committed
995
        """
996
        # support multi-stage predictions
hjin2902's avatar
hjin2902 committed
997
998
999
1000
        assert self.test_cfg['prediction_stages'] in \
            ['last', 'all', 'last_three']

        if self.test_cfg['prediction_stages'] == 'last':
1001
            prefixes = [f's{self.num_decoder_layers - 1}.']
hjin2902's avatar
hjin2902 committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        elif self.test_cfg['prediction_stages'] == 'all':
            prefixes = ['proposal.'] + \
                [f's{i}.' for i in range(self.num_decoder_layers)]
        elif self.test_cfg['prediction_stages'] == 'last_three':
            prefixes = [
                f's{i}.' for i in range(self.num_decoder_layers -
                                        3, self.num_decoder_layers)
            ]
        else:
            raise NotImplementedError

        obj_scores = list()
        sem_scores = list()
        bbox3d = list()
        for prefix in prefixes:
            # decode boxes
jshilong's avatar
jshilong committed
1018
1019
1020
1021
            obj_score = bbox_preds_dict[f'{prefix}obj_scores'][...,
                                                               -1].sigmoid()
            sem_score = bbox_preds_dict[f'{prefix}sem_scores'].softmax(-1)
            bbox = self.bbox_coder.decode(bbox_preds_dict, prefix)
hjin2902's avatar
hjin2902 committed
1022
1023
1024
1025
1026
1027
1028
            obj_scores.append(obj_score)
            sem_scores.append(sem_score)
            bbox3d.append(bbox)

        obj_scores = torch.cat(obj_scores, dim=1)
        sem_scores = torch.cat(sem_scores, dim=1)
        bbox3d = torch.cat(bbox3d, dim=1)
jshilong's avatar
jshilong committed
1029
1030
        stack_points = torch.stack(points)
        results_list = list()
hjin2902's avatar
hjin2902 committed
1031
1032
        if use_nms:
            batch_size = bbox3d.shape[0]
jshilong's avatar
jshilong committed
1033
            temp_results = InstanceData()
hjin2902's avatar
hjin2902 committed
1034
1035
            for b in range(batch_size):
                bbox_selected, score_selected, labels = \
jshilong's avatar
jshilong committed
1036
1037
1038
1039
1040
1041
                    self.multiclass_nms_single(obj_scores[b],
                                               sem_scores[b],
                                               bbox3d[b],
                                               stack_points[b, ..., :3],
                                               batch_input_metas[b])
                bbox = batch_input_metas[b]['box_type_3d'](
hjin2902's avatar
hjin2902 committed
1042
1043
1044
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
jshilong's avatar
jshilong committed
1045
1046
1047
1048
1049
                temp_results.bboxes_3d = bbox
                temp_results.scores_3d = score_selected
                temp_results.labels_3d = labels
                results_list.append(temp_results)
            return results_list
hjin2902's avatar
hjin2902 committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        else:
            return bbox3d

    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
        """Multi-class nms in single batch.

        Args:
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
            points (torch.Tensor): Input points.
            input_meta (dict): Point cloud and image's meta info.

        Returns:
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
        """
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
1072
        box_indices = bbox.points_in_boxes_all(points)
hjin2902's avatar
hjin2902 committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

        corner3d = bbox.corners
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
                bbox_selected.append(bbox[selected].tensor)
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
            bbox_selected = bbox[selected].tensor
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels