kitti_dataset.py 18.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import copy
import os
3
4
import os.path as osp
import tempfile
zhangwenwei's avatar
zhangwenwei committed
5
6
7
8

import mmcv
import numpy as np
import torch
zhangwenwei's avatar
zhangwenwei committed
9
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
10

zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.datasets import DATASETS
12
from ..core.bbox import Box3DMode, CameraInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
13
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
14
15


16
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
17
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
18
19
20
21

    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
22
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
23
24
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
25
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
26
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
27
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
28
                 modality=None,
29
30
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
31
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
32
33
34
35
36
37
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
38
39
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
40
41
42
            test_mode=test_mode)

        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
43
44
        assert self.modality is not None
        self.pcd_limit_range = [0, -40, -3, 70.4, 40, 0.0]
zhangwenwei's avatar
zhangwenwei committed
45
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
46

zhangwenwei's avatar
zhangwenwei committed
47
48
49
50
    def _get_pts_filename(self, idx):
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
51

zhangwenwei's avatar
zhangwenwei committed
52
53
    def get_data_info(self, index):
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
54
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
55
56
57
        img_filename = os.path.join(self.root_split,
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
62
63
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
64
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
65
66
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
67
68
69
70
71
            pts_filename=pts_filename,
            img_filename=img_filename,
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
72
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
73
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78

        return input_dict

    def get_ann_info(self, index):
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
79
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
80
81
82
83
84
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
85
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
86
87
88
89
90
91
92
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        # print(gt_names, len(loc))
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
93
94
95

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
96
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
97
98
99
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
100
        # gt_bboxes_3d = gt_bboxes_3d[selected].astype('float32')
zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
108
109
110
111
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
        gt_labels = np.array(gt_labels)
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
112
113
114

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
115
116
117
            gt_labels_3d=gt_labels_3d,
            gt_bboxes=gt_bboxes,
            gt_labels=gt_labels)
zhangwenwei's avatar
zhangwenwei committed
118
119
120
121
122
123
124
125
126
127
128
129
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

130
131
132
133
134
135
136
137
138
139
    def remove_dontcare(self, ann_info):
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

140
141
142
143
144
145
146
147
148
149
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
150
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
151
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
152
                                                    pklfile_prefix,
153
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
154
        else:
zhangwenwei's avatar
zhangwenwei committed
155
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
156
157
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
158
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
                 submission_prefix=None,
                 result_names=['pts_bbox']):
        """Evaluation in KITTI protocol.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submission datas.
                If not specified, the submission data will not be generated.

        Returns:
            dict[str: float]
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
184
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
185
        gt_annos = [info['annos'] for info in self.data_infos]
186
        if metric == 'img_bbox':
zhangwenwei's avatar
zhangwenwei committed
187
            ap_result_str, ap_dict = kitti_eval(
zhangwenwei's avatar
zhangwenwei committed
188
                gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
zhangwenwei's avatar
zhangwenwei committed
189
190
        else:
            ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
zhangwenwei's avatar
zhangwenwei committed
191
                                                self.CLASSES)
zhangwenwei's avatar
zhangwenwei committed
192
        print_log('\n' + ap_result_str, logger=logger)
193
194
        if tmp_dir is not None:
            tmp_dir.cleanup()
195
        return ap_dict
196
197
198
199
200
201

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
202
        assert len(net_outputs) == len(self.data_infos)
203
204
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
205
206

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
207
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
208
209
210
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
211
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
212
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
213
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

            box_dict = self.convert_valid_bboxes(pred_dicts, info)
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                anno = {
                    'name': [],
                    'truncated': [],
                    'occluded': [],
                    'alpha': [],
                    'bbox': [],
                    'dimensions': [],
                    'location': [],
                    'rotation_y': [],
                    'score': []
                }

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

                if submission_prefix is not None:
                    curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                    with open(curr_file, 'w') as f:
                        bbox = anno['bbox']
                        loc = anno['location']
                        dims = anno['dimensions']  # lhw -> hwl

                        for idx in range(len(bbox)):
                            print(
                                '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                                '{:.4f} {:.4f} {:.4f} '
                                '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.
                                format(anno['name'][idx], anno['alpha'][idx],
                                       bbox[idx][0], bbox[idx][1],
                                       bbox[idx][2], bbox[idx][3],
                                       dims[idx][1], dims[idx][2],
                                       dims[idx][0], loc[idx][0], loc[idx][1],
                                       loc[idx][2], anno['rotation_y'][idx],
                                       anno['score'][idx]),
                                file=f)
            else:
                annos.append({
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                })
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
288
289
290

            det_annos += annos

291
292
293
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
294
295
296
297
298
299
300
301
            mmcv.dump(det_annos, out)
            print('Result is saved to %s' % out)

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
302
303
                            pklfile_prefix=None,
                            submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
304
305
306
307
308
        """Convert results to kitti format for evaluation and test submission

        Args:
            net_outputs (List[array]): list of array storing the bbox and score
            class_nanes (List[String]): A list of class names
309
310
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
311
312
313
314

        Return:
            List([dict]): A list of dict have the kitti format
        """
zhangwenwei's avatar
zhangwenwei committed
315
        assert len(net_outputs) == len(self.data_infos)
zhangwenwei's avatar
zhangwenwei committed
316
317

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
318
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
319
320
321
322
323
324
325
326
327
328
329
330
331
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
332
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

374
375
376
377
378
379
380
381
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
382
            # save file in submission format
383
384
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
385
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
386
                sample_idx = self.data_infos[i]['image']['image_idx']
387
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
405
            print('Result is saved to {}'.format(submission_prefix))
zhangwenwei's avatar
zhangwenwei committed
406
407
408
409
410

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
        # TODO: refactor this function
411
412
413
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
414
        sample_idx = info['image']['image_idx']
415
416
417
        # TODO: remove the hack of yaw
        box_preds.tensor[:, -1] = box_preds.tensor[:, -1] - np.pi
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
418

419
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
420
            return dict(
421
422
423
424
425
426
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
427
428
429
430
431
432

        from mmdet3d.core.bbox import box_torch_ops
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
433
434
435
436
437
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
438
439
440
441
442
443
        box_corners_in_image = box_torch_ops.project_to_image(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
444
445
446
447
448
449
450
451
452
453
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_preds_camera.tensor[:, 0] < image_shape[1]) &
                          (box_preds_camera.tensor[:, 1] < image_shape[0]) &
                          (box_preds_camera.tensor[:, 2] > 0) &
                          (box_preds_camera.tensor[:, 3] > 0))
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
454
455
456
457
458
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
459
460
461
462
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
zhangwenwei's avatar
zhangwenwei committed
463
464
465
466
                sample_idx=sample_idx,
            )
        else:
            return dict(
467
468
469
470
471
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
zhangwenwei's avatar
zhangwenwei committed
472
473
                sample_idx=sample_idx,
            )