"sgl-kernel/vscode:/vscode.git/clone" did not exist on "3efbdf68b91e29245e41702b9cbe60aca7cd6351"
train.py 8.21 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
from __future__ import division
zhangwenwei's avatar
zhangwenwei committed
2

zhangwenwei's avatar
zhangwenwei committed
3
4
import argparse
import copy
zhangwenwei's avatar
zhangwenwei committed
5
import mmcv
zhangwenwei's avatar
zhangwenwei committed
6
7
8
import os
import time
import torch
Wenhao Wu's avatar
Wenhao Wu committed
9
import warnings
zww's avatar
zww committed
10
from mmcv import Config, DictAction
Wenhao Wu's avatar
Wenhao Wu committed
11
from mmcv.runner import get_dist_info, init_dist
zhangwenwei's avatar
zhangwenwei committed
12
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
13

14
15
16
from mmdet import __version__ as mmdet_version
from mmdet3d import __version__ as mmdet3d_version
from mmdet3d.apis import train_model
zhangwenwei's avatar
zhangwenwei committed
17
from mmdet3d.datasets import build_dataset
18
from mmdet3d.models import build_model
zhangwenwei's avatar
zhangwenwei committed
19
from mmdet3d.utils import collect_env, get_root_logger
20
21
from mmdet.apis import set_random_seed
from mmseg import __version__ as mmseg_version
zhangwenwei's avatar
zhangwenwei committed
22
23
24
25
26


def parse_args():
    parser = argparse.ArgumentParser(description='Train a detector')
    parser.add_argument('config', help='train config file path')
zhangwenwei's avatar
zhangwenwei committed
27
    parser.add_argument('--work-dir', help='the dir to save logs and models')
zhangwenwei's avatar
zhangwenwei committed
28
    parser.add_argument(
zhangwenwei's avatar
zhangwenwei committed
29
        '--resume-from', help='the checkpoint file to resume from')
zhangwenwei's avatar
zhangwenwei committed
30
    parser.add_argument(
zww's avatar
zww committed
31
        '--no-validate',
zhangwenwei's avatar
zhangwenwei committed
32
        action='store_true',
zww's avatar
zww committed
33
        help='whether not to evaluate the checkpoint during training')
34
35
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
zhangwenwei's avatar
zhangwenwei committed
36
37
38
39
        '--gpus',
        type=int,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
40
41
42
43
44
45
    group_gpus.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
zhangwenwei's avatar
zhangwenwei committed
46
47
48
49
50
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
zww's avatar
zww committed
51
    parser.add_argument(
Wenhao Wu's avatar
Wenhao Wu committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        '--options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file (deprecate), '
        'change to --cfg-options instead.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
zhangwenwei's avatar
zhangwenwei committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

Wenhao Wu's avatar
Wenhao Wu committed
82
83
84
85
86
87
88
89
    if args.options and args.cfg_options:
        raise ValueError(
            '--options and --cfg-options cannot be both specified, '
            '--options is deprecated in favor of --cfg-options')
    if args.options:
        warnings.warn('--options is deprecated in favor of --cfg-options')
        args.cfg_options = args.options

zhangwenwei's avatar
zhangwenwei committed
90
91
92
93
94
95
96
    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
Wenhao Wu's avatar
Wenhao Wu committed
97
98
99
100
101
102
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
zww's avatar
zww committed
103

zhangwenwei's avatar
zhangwenwei committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
118
119
120
121
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
zhangwenwei's avatar
zhangwenwei committed
122
123
124

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
125
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
131
132

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
Wenhao Wu's avatar
Wenhao Wu committed
133
134
135
        # re-set gpu_ids with distributed training mode
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)
zhangwenwei's avatar
zhangwenwei committed
136
137
138

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
Wenhao Wu's avatar
Wenhao Wu committed
139
140
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
zhangwenwei's avatar
zhangwenwei committed
141
142
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
zww's avatar
zww committed
143
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
144
145
146
147
148
149
150
151
152
    # specify logger name, if we still use 'mmdet', the output info will be
    # filtered and won't be saved in the log_file
    # TODO: ugly workaround to judge whether we are training det or seg model
    if cfg.model.type in ['EncoderDecoder3D']:
        logger_name = 'mmseg'
    else:
        logger_name = 'mmdet'
    logger = get_root_logger(
        log_file=log_file, log_level=cfg.log_level, name=logger_name)
153

zhangwenwei's avatar
zhangwenwei committed
154
155
156
157
158
    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
zww's avatar
zww committed
159
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
zhangwenwei's avatar
zhangwenwei committed
160
161
162
163
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info
Wenhao Wu's avatar
Wenhao Wu committed
164
    meta['config'] = cfg.pretty_text
zhangwenwei's avatar
zhangwenwei committed
165
166

    # log some basic info
zww's avatar
zww committed
167
168
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')
zhangwenwei's avatar
zhangwenwei committed
169
170
171

    # set random seeds
    if args.seed is not None:
zww's avatar
zww committed
172
173
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
zhangwenwei's avatar
zhangwenwei committed
174
175
176
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed
Wenhao Wu's avatar
Wenhao Wu committed
177
    meta['exp_name'] = osp.basename(args.config)
zhangwenwei's avatar
zhangwenwei committed
178

179
    model = build_model(
180
181
182
        cfg.model,
        train_cfg=cfg.get('train_cfg'),
        test_cfg=cfg.get('test_cfg'))
183
    model.init_weights()
184

zww's avatar
zww committed
185
    logger.info(f'Model:\n{model}')
zhangwenwei's avatar
zhangwenwei committed
186
187
188
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
189
190
191
192
193
194
195
196
197
        # in case we use a dataset wrapper
        if 'dataset' in cfg.data.train:
            val_dataset.pipeline = cfg.data.train.dataset.pipeline
        else:
            val_dataset.pipeline = cfg.data.train.pipeline
        # set test_mode=False here in deep copied config
        # which do not affect AP/AR calculation later
        # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow  # noqa
        val_dataset.test_mode = False
zhangwenwei's avatar
zhangwenwei committed
198
199
200
201
202
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
203
204
205
            mmdet_version=mmdet_version,
            mmseg_version=mmseg_version,
            mmdet3d_version=mmdet3d_version,
zww's avatar
zww committed
206
            config=cfg.pretty_text,
207
208
209
            CLASSES=datasets[0].CLASSES,
            PALETTE=datasets[0].PALETTE  # for segmentors
            if hasattr(datasets[0], 'PALETTE') else None)
zhangwenwei's avatar
zhangwenwei committed
210
211
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
212
    train_model(
zhangwenwei's avatar
zhangwenwei committed
213
214
215
216
        model,
        datasets,
        cfg,
        distributed=distributed,
zww's avatar
zww committed
217
        validate=(not args.no_validate),
zhangwenwei's avatar
zhangwenwei committed
218
219
220
221
222
223
        timestamp=timestamp,
        meta=meta)


if __name__ == '__main__':
    main()