test_nms_rotated.py 4.46 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
3
import pytest
4
5
6
import torch


limm's avatar
limm committed
7
8
9
@pytest.mark.skipif(
    not torch.cuda.is_available(),
    reason='GPU is required to test NMSRotated op')
10
class TestNmsRotated:
11

limm's avatar
limm committed
12
    def test_ml_nms_rotated(self):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

limm's avatar
limm committed
27
28
        boxes = torch.from_numpy(np_boxes).cuda()
        labels = torch.from_numpy(np_labels).cuda()
29

limm's avatar
limm committed
30
        # test cw angle definition
31
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels)
32

33
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
34
35
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

limm's avatar
limm committed
36
37
38
39
40
41
42
43
        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(
            boxes[:, :5], boxes[:, -1], 0.5, labels, clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

limm's avatar
limm committed
44
    def test_nms_rotated(self):
45
46
47
48
49
50
51
52
53
54
55
56
57
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

limm's avatar
limm committed
58
        boxes = torch.from_numpy(np_boxes).cuda()
59

limm's avatar
limm committed
60
        # test cw angle definition
61
62
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5)
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
63
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
limm's avatar
limm committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(
            boxes[:, :5], boxes[:, -1], 0.5, clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

    def test_batched_nms(self):
        # test batched_nms with nms_rotated
        from mmcv.ops import batched_nms

        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_agnostic_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_agnostic_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5], [3.0, 7.0, 10.0, 12.0, 0.3]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64)

        nms_cfg = dict(type='nms_rotated', iou_threshold=0.5)

        # test class_agnostic is True
        boxes, keep = batched_nms(
            torch.from_numpy(np_boxes[:, :5]),
            torch.from_numpy(np_boxes[:, -1]),
            torch.from_numpy(np_labels),
            nms_cfg,
            class_agnostic=True)
        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_agnostic_dets)
        assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds)

        # test class_agnostic is False
        boxes, keep = batched_nms(
            torch.from_numpy(np_boxes[:, :5]),
            torch.from_numpy(np_boxes[:, -1]),
            torch.from_numpy(np_labels),
            nms_cfg,
            class_agnostic=False)
        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)