test_nms_rotated.py 5.12 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
3
import pytest
4
5
import torch

6
7
from mmcv.utils import IS_CUDA_AVAILABLE, IS_NPU_AVAILABLE

8

9
class TestNmsRotated:
10

11
12
13
14
15
16
17
18
19
20
21
    @pytest.mark.parametrize('device', [
        pytest.param(
            'npu',
            marks=pytest.mark.skipif(
                not IS_NPU_AVAILABLE, reason='requires NPU support')),
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    ])
    def test_ml_nms_rotated(self, device):
22
23
24
25
26
27
28
29
30
31
32
33
34
35
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

36
37
        boxes = torch.from_numpy(np_boxes).to(device)
        labels = torch.from_numpy(np_labels).to(device)
38

39
        # test cw angle definition
40
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels)
41

42
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
43
44
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

45
46
47
48
49
50
51
52
        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(
            boxes[:, :5], boxes[:, -1], 0.5, labels, clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

53
54
55
56
57
58
59
60
61
62
63
    @pytest.mark.parametrize('device', [
        pytest.param(
            'npu',
            marks=pytest.mark.skipif(
                not IS_NPU_AVAILABLE, reason='requires NPU support')),
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    ])
    def test_nms_rotated(self, device):
64
65
66
67
68
69
70
71
72
73
74
75
76
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

77
        boxes = torch.from_numpy(np_boxes).to(device)
78

79
        # test cw angle definition
80
81
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5)
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
82
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
83
84
85
86
87
88
89
90

        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(
            boxes[:, :5], boxes[:, -1], 0.5, clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
91

92
    def test_batched_nms(self):
93
94
95
        # test batched_nms with nms_rotated
        from mmcv.ops import batched_nms

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_agnostic_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_agnostic_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5], [3.0, 7.0, 10.0, 12.0, 0.3]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64)

115
116
        nms_cfg = dict(type='nms_rotated', iou_threshold=0.5)

117
118
119
120
121
122
123
124
125
126
127
        # test class_agnostic is True
        boxes, keep = batched_nms(
            torch.from_numpy(np_boxes[:, :5]),
            torch.from_numpy(np_boxes[:, -1]),
            torch.from_numpy(np_labels),
            nms_cfg,
            class_agnostic=True)
        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_agnostic_dets)
        assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds)

        # test class_agnostic is False
128
129
130
        boxes, keep = batched_nms(
            torch.from_numpy(np_boxes[:, :5]),
            torch.from_numpy(np_boxes[:, -1]),
131
            torch.from_numpy(np_labels),
132
133
134
135
            nms_cfg,
            class_agnostic=False)
        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)