test_wrappers.py 11.9 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Cao Yuhang's avatar
Cao Yuhang committed
2
3
from unittest.mock import patch

dreamerlin's avatar
dreamerlin committed
4
import pytest
Cao Yuhang's avatar
Cao Yuhang committed
5
6
7
import torch
import torch.nn as nn

dreamerlin's avatar
dreamerlin committed
8
9
from mmcv.cnn.bricks import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
                             Linear, MaxPool2d, MaxPool3d)
Cao Yuhang's avatar
Cao Yuhang committed
10

11
12
13
14
if torch.__version__ != 'parrots':
    torch_version = '1.1'
else:
    torch_version = 'parrots'
Cao Yuhang's avatar
Cao Yuhang committed
15

16
17

@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
18
19
20
21
22
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
Cao Yuhang's avatar
Cao Yuhang committed
23
24
25
26
27
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv2d
    """
    # train mode
dreamerlin's avatar
dreamerlin committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
60
61

    # eval mode
dreamerlin's avatar
dreamerlin committed
62
63
64
65
66
67
68
69
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
Cao Yuhang's avatar
Cao Yuhang committed
70
71
72
73
    wrapper.eval()
    wrapper(x_empty)


74
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv3d
    """
    # train mode
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h,
                           in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)

    # eval mode
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper.eval()
    wrapper(x_empty)


132
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
133
134
135
136
137
138
139
140
141
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_2d(in_w, in_h, in_channel, out_channel, kernel_size,
                            stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
142
143
    if torch.__version__ == 'parrots':
        op = 0
dreamerlin's avatar
dreamerlin committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    torch.manual_seed(0)
    wrapper = ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
176
177

    # eval mode
dreamerlin's avatar
dreamerlin committed
178
    x_empty = torch.randn(0, in_channel, in_h, in_w)
Cao Yuhang's avatar
Cao Yuhang committed
179
    wrapper = ConvTranspose2d(
dreamerlin's avatar
dreamerlin committed
180
181
182
183
184
185
186
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
Cao Yuhang's avatar
Cao Yuhang committed
187
188
189
190
    wrapper.eval()
    wrapper(x_empty)


191
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_3d(in_w, in_h, in_t, in_channel, out_channel,
                            kernel_size, stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
233
234

    # eval mode
dreamerlin's avatar
dreamerlin committed
235
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
dreamerlin's avatar
dreamerlin committed
236
    wrapper = ConvTranspose3d(
dreamerlin's avatar
dreamerlin committed
237
238
239
240
241
242
243
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
dreamerlin's avatar
dreamerlin committed
244
245
246
247
    wrapper.eval()
    wrapper(x_empty)


248
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
249
250
251
252
253
254
255
256
257
258
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                     padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    wrapper = MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
259

dreamerlin's avatar
dreamerlin committed
260
261
262
263
264
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    ref = nn.MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
Cao Yuhang's avatar
Cao Yuhang committed
265

dreamerlin's avatar
dreamerlin committed
266
267
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
Cao Yuhang's avatar
Cao Yuhang committed
268

dreamerlin's avatar
dreamerlin committed
269
    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
270
271


272
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
273
274
275
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
276
277
278
@pytest.mark.skipif(
    torch.__version__ == 'parrots' and not torch.cuda.is_available(),
    reason='parrots requires CUDA support')
dreamerlin's avatar
dreamerlin committed
279
280
281
282
283
284
def test_max_pool_3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size,
                     stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    wrapper = MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
285
286
    if torch.__version__ == 'parrots':
        x_empty = x_empty.cuda()
dreamerlin's avatar
dreamerlin committed
287
288
289
290
291
    wrapper_out = wrapper(x_empty)
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    ref = nn.MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
292
293
    if torch.__version__ == 'parrots':
        x_normal = x_normal.cuda()
dreamerlin's avatar
dreamerlin committed
294
    ref_out = ref(x_normal)
dreamerlin's avatar
dreamerlin committed
295

dreamerlin's avatar
dreamerlin committed
296
297
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
dreamerlin's avatar
dreamerlin committed
298

dreamerlin's avatar
dreamerlin committed
299
    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
300
301


302
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@pytest.mark.parametrize('in_w,in_h,in_feature,out_feature', [(10, 10, 1, 1),
                                                              (20, 20, 3, 3)])
def test_linear(in_w, in_h, in_feature, out_feature):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_feature, requires_grad=True)
    torch.manual_seed(0)
    wrapper = Linear(in_feature, out_feature)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_feature)
    torch.manual_seed(0)
    ref = nn.Linear(in_feature, out_feature)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
326
327
328
329
330
331
332
333

    # eval mode
    x_empty = torch.randn(0, in_feature)
    wrapper = Linear(in_feature, out_feature)
    wrapper.eval()
    wrapper(x_empty)


334
@patch('mmcv.cnn.bricks.wrappers.TORCH_VERSION', (1, 10))
Cao Yuhang's avatar
Cao Yuhang committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def test_nn_op_forward_called():

    for m in ['Conv2d', 'ConvTranspose2d', 'MaxPool2d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

351
352
353
354
355
356
357
358
359
360
361
362
363
364
    for m in ['Conv3d', 'ConvTranspose3d', 'MaxPool3d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

Cao Yuhang's avatar
Cao Yuhang committed
365
366
367
368
369
    with patch('torch.nn.Linear.forward') as nn_module_forward:
        # randn input
        x_empty = torch.randn(0, 3)
        wrapper = Linear(3, 3)
        wrapper(x_empty)
370
        nn_module_forward.assert_called_with(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
371
372
373
374
375
376

        # non-randn input
        x_normal = torch.randn(1, 3)
        wrapper = Linear(3, 3)
        wrapper(x_normal)
        nn_module_forward.assert_called_with(x_normal)