test_wrappers.py 9.14 KB
Newer Older
Cao Yuhang's avatar
Cao Yuhang committed
1
2
from unittest.mock import patch

dreamerlin's avatar
dreamerlin committed
3
import pytest
Cao Yuhang's avatar
Cao Yuhang committed
4
5
6
import torch
import torch.nn as nn

dreamerlin's avatar
dreamerlin committed
7
from mmcv.cnn.bricks import (Conv2d, ConvTranspose2d, ConvTranspose3d, Linear,
dreamerlin's avatar
dreamerlin committed
8
                             MaxPool2d, MaxPool3d)
Cao Yuhang's avatar
Cao Yuhang committed
9
10


11
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
12
13
14
15
16
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
Cao Yuhang's avatar
Cao Yuhang committed
17
18
19
20
21
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv2d
    """
    # train mode
dreamerlin's avatar
dreamerlin committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
54
55

    # eval mode
dreamerlin's avatar
dreamerlin committed
56
57
58
59
60
61
62
63
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
Cao Yuhang's avatar
Cao Yuhang committed
64
65
66
67
    wrapper.eval()
    wrapper(x_empty)


68
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_2d(in_w, in_h, in_channel, out_channel, kernel_size,
                            stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
110
111

    # eval mode
dreamerlin's avatar
dreamerlin committed
112
    x_empty = torch.randn(0, in_channel, in_h, in_w)
Cao Yuhang's avatar
Cao Yuhang committed
113
    wrapper = ConvTranspose2d(
dreamerlin's avatar
dreamerlin committed
114
115
116
117
118
119
120
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
Cao Yuhang's avatar
Cao Yuhang committed
121
122
123
124
    wrapper.eval()
    wrapper(x_empty)


dreamerlin's avatar
dreamerlin committed
125
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_3d(in_w, in_h, in_t, in_channel, out_channel,
                            kernel_size, stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
167
168

    # eval mode
dreamerlin's avatar
dreamerlin committed
169
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
dreamerlin's avatar
dreamerlin committed
170
    wrapper = ConvTranspose3d(
dreamerlin's avatar
dreamerlin committed
171
172
173
174
175
176
177
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
dreamerlin's avatar
dreamerlin committed
178
179
180
181
    wrapper.eval()
    wrapper(x_empty)


182
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
183
184
185
186
187
188
189
190
191
192
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                     padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    wrapper = MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
193

dreamerlin's avatar
dreamerlin committed
194
195
196
197
198
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    ref = nn.MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
Cao Yuhang's avatar
Cao Yuhang committed
199

dreamerlin's avatar
dreamerlin committed
200
201
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
Cao Yuhang's avatar
Cao Yuhang committed
202

dreamerlin's avatar
dreamerlin committed
203
    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
204
205


dreamerlin's avatar
dreamerlin committed
206
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
207
208
209
210
211
212
213
214
215
216
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size,
                     stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    wrapper = MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
dreamerlin's avatar
dreamerlin committed
217

dreamerlin's avatar
dreamerlin committed
218
219
220
221
222
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    ref = nn.MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
dreamerlin's avatar
dreamerlin committed
223

dreamerlin's avatar
dreamerlin committed
224
225
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
dreamerlin's avatar
dreamerlin committed
226

dreamerlin's avatar
dreamerlin committed
227
    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
228
229


230
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
@pytest.mark.parametrize('in_w,in_h,in_feature,out_feature', [(10, 10, 1, 1),
                                                              (20, 20, 3, 3)])
def test_linear(in_w, in_h, in_feature, out_feature):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_feature, requires_grad=True)
    torch.manual_seed(0)
    wrapper = Linear(in_feature, out_feature)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_feature)
    torch.manual_seed(0)
    ref = nn.Linear(in_feature, out_feature)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
254
255
256
257
258
259
260
261

    # eval mode
    x_empty = torch.randn(0, in_feature)
    wrapper = Linear(in_feature, out_feature)
    wrapper.eval()
    wrapper(x_empty)


262
@patch('mmcv.cnn.bricks.wrappers.TORCH_VERSION', (1, 8))
Cao Yuhang's avatar
Cao Yuhang committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def test_nn_op_forward_called():

    for m in ['Conv2d', 'ConvTranspose2d', 'MaxPool2d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

    with patch('torch.nn.Linear.forward') as nn_module_forward:
        # randn input
        x_empty = torch.randn(0, 3)
        wrapper = Linear(3, 3)
        wrapper(x_empty)
284
        nn_module_forward.assert_called_with(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
285
286
287
288
289
290

        # non-randn input
        x_normal = torch.randn(1, 3)
        wrapper = Linear(3, 3)
        wrapper(x_normal)
        nn_module_forward.assert_called_with(x_normal)