test_wrappers.py 10.8 KB
Newer Older
Cao Yuhang's avatar
Cao Yuhang committed
1
2
from unittest.mock import patch

dreamerlin's avatar
dreamerlin committed
3
import pytest
Cao Yuhang's avatar
Cao Yuhang committed
4
5
6
import torch
import torch.nn as nn

dreamerlin's avatar
dreamerlin committed
7
8
from mmcv.cnn.bricks import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
                             Linear, MaxPool2d, MaxPool3d)
Cao Yuhang's avatar
Cao Yuhang committed
9
10


11
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
12
13
14
15
16
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
Cao Yuhang's avatar
Cao Yuhang committed
17
18
19
20
21
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv2d
    """
    # train mode
dreamerlin's avatar
dreamerlin committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
54
55

    # eval mode
dreamerlin's avatar
dreamerlin committed
56
57
58
59
60
61
62
63
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
Cao Yuhang's avatar
Cao Yuhang committed
64
65
66
67
    wrapper.eval()
    wrapper(x_empty)


dreamerlin's avatar
dreamerlin committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@patch('torch.__version__', '1.1')
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv3d
    """
    # train mode
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h,
                           in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)

    # eval mode
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper.eval()
    wrapper(x_empty)


126
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_2d(in_w, in_h, in_channel, out_channel, kernel_size,
                            stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
168
169

    # eval mode
dreamerlin's avatar
dreamerlin committed
170
    x_empty = torch.randn(0, in_channel, in_h, in_w)
Cao Yuhang's avatar
Cao Yuhang committed
171
    wrapper = ConvTranspose2d(
dreamerlin's avatar
dreamerlin committed
172
173
174
175
176
177
178
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
Cao Yuhang's avatar
Cao Yuhang committed
179
180
181
182
    wrapper.eval()
    wrapper(x_empty)


dreamerlin's avatar
dreamerlin committed
183
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_3d(in_w, in_h, in_t, in_channel, out_channel,
                            kernel_size, stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
225
226

    # eval mode
dreamerlin's avatar
dreamerlin committed
227
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
dreamerlin's avatar
dreamerlin committed
228
    wrapper = ConvTranspose3d(
dreamerlin's avatar
dreamerlin committed
229
230
231
232
233
234
235
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
dreamerlin's avatar
dreamerlin committed
236
237
238
239
    wrapper.eval()
    wrapper(x_empty)


240
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
241
242
243
244
245
246
247
248
249
250
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                     padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    wrapper = MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
251

dreamerlin's avatar
dreamerlin committed
252
253
254
255
256
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    ref = nn.MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
Cao Yuhang's avatar
Cao Yuhang committed
257

dreamerlin's avatar
dreamerlin committed
258
259
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
Cao Yuhang's avatar
Cao Yuhang committed
260

dreamerlin's avatar
dreamerlin committed
261
    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
262
263


dreamerlin's avatar
dreamerlin committed
264
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
265
266
267
268
269
270
271
272
273
274
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size,
                     stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    wrapper = MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
dreamerlin's avatar
dreamerlin committed
275

dreamerlin's avatar
dreamerlin committed
276
277
278
279
280
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    ref = nn.MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
dreamerlin's avatar
dreamerlin committed
281

dreamerlin's avatar
dreamerlin committed
282
283
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
dreamerlin's avatar
dreamerlin committed
284

dreamerlin's avatar
dreamerlin committed
285
    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
286
287


288
@patch('torch.__version__', '1.1')
dreamerlin's avatar
dreamerlin committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
@pytest.mark.parametrize('in_w,in_h,in_feature,out_feature', [(10, 10, 1, 1),
                                                              (20, 20, 3, 3)])
def test_linear(in_w, in_h, in_feature, out_feature):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_feature, requires_grad=True)
    torch.manual_seed(0)
    wrapper = Linear(in_feature, out_feature)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_feature)
    torch.manual_seed(0)
    ref = nn.Linear(in_feature, out_feature)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
312
313
314
315
316
317
318
319

    # eval mode
    x_empty = torch.randn(0, in_feature)
    wrapper = Linear(in_feature, out_feature)
    wrapper.eval()
    wrapper(x_empty)


320
@patch('mmcv.cnn.bricks.wrappers.TORCH_VERSION', (1, 8))
Cao Yuhang's avatar
Cao Yuhang committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def test_nn_op_forward_called():

    for m in ['Conv2d', 'ConvTranspose2d', 'MaxPool2d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

    with patch('torch.nn.Linear.forward') as nn_module_forward:
        # randn input
        x_empty = torch.randn(0, 3)
        wrapper = Linear(3, 3)
        wrapper(x_empty)
342
        nn_module_forward.assert_called_with(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
343
344
345
346
347
348

        # non-randn input
        x_normal = torch.randn(1, 3)
        wrapper = Linear(3, 3)
        wrapper(x_normal)
        nn_module_forward.assert_called_with(x_normal)