test_hooks.py 9.02 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3
4
5
6

CommandLine:
    pytest tests/test_hooks.py
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
10
import sys
11
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
12
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13

14
15
16
17
18
import pytest
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

19
20
from mmcv.runner import (EpochBasedRunner, IterTimerHook, MlflowLoggerHook,
                         PaviLoggerHook, WandbLoggerHook)
Wang Xinjiang's avatar
Wang Xinjiang committed
21
from mmcv.runner.hooks.lr_updater import CosineRestartLrUpdaterHook
Jiangmiao Pang's avatar
Jiangmiao Pang committed
22
23
24
25
26


def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
27
28
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
29
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
30
31
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
32
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
33
34

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
35
36
37
38
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
    }, 5)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
39
    hook.writer.add_snapshot_file.assert_called_with(
40
        tag=runner.work_dir.split('/')[-1],
Wenwei Zhang's avatar
Wenwei Zhang committed
41
        snapshot_file_path=osp.join(runner.work_dir, 'latest.pth'),
Jiangmiao Pang's avatar
Jiangmiao Pang committed
42
        iteration=5)
43
44


Wang Xinjiang's avatar
Wang Xinjiang committed
45
46
47
48
49
50
51
52
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
    shutil.rmtree(runner.work_dir)


Wenwei Zhang's avatar
Wenwei Zhang committed
53
def test_momentum_runner_hook():
Kai Chen's avatar
Kai Chen committed
54
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
55
56
57
58
59
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
60
61
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
62
63
64
65
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
66
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
67
68

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
69
70
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
71
72
73
74
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
75
76
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
77
78

    # add pavi hook
79
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
80
81
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
82
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01999999999999999,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.2,
            'momentum': 0.85
        }, 4),
        call('train', {
            'learning_rate': 0.155,
            'momentum': 0.875
        }, 6),
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


def test_cosine_runner_hook():
Kai Chen's avatar
Kai Chen committed
104
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
105
106
107
108
109
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
110
111
112

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
113
114
115
116
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
117
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
118
119

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
120
121
122
123
124
125
126
127
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
128
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
129
    # add pavi hook
130
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
131
132
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
133
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.97
        }, 5),
        call('train', {
            'learning_rate': 0.0004894348370484647,
            'momentum': 0.9890211303259032
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Harry's avatar
Harry committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def test_cosine_restart_lr_update_hook():
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
        runner.run([loader], [('train', 1)], 1)
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.0,
            'momentum': 0.95
        }, 5),
        call('train', {
            'learning_rate': 0.0009549150281252633,
            'momentum': 0.95
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


232
233
234
235
236
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
237
238
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
239

240
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
241
242
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
243
    shutil.rmtree(runner.work_dir)
244
245

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
246
247
248
249
250
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, step=5)
251
252
253
254
255
256
257
258
259
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
260
    runner = _build_demo_runner()
261
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
262
    loader = DataLoader(torch.ones((5, 2)))
263
264
265

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
266
267
    shutil.rmtree(runner.work_dir)

268
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
269
270
271
272
273
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
                                      step=5)
274
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
275
276
277


def _build_demo_runner():
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

Wenwei Zhang's avatar
Wenwei Zhang committed
296
297
298
299
300
301
302
    optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

303
    tmp_dir = tempfile.mkdtemp()
304
    runner = EpochBasedRunner(
Wenwei Zhang's avatar
Wenwei Zhang committed
305
        model=model,
306
307
308
        work_dir=tmp_dir,
        optimizer=optimizer,
        logger=logging.getLogger())
Wenwei Zhang's avatar
Wenwei Zhang committed
309
310
311

    runner.register_logger_hooks(log_config)
    return runner