test_bbox.py 3.06 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
3
import pytest
4
5
import torch

6
7
from mmcv.utils import (IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE,
                        IS_NPU_AVAILABLE)
8
9


10
class TestBBox:
11

q.yao's avatar
q.yao committed
12
    def _test_bbox_overlaps(self, device='cpu', dtype=torch.float):
13
14
        from mmcv.ops import bbox_overlaps
        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0],
15
                           [7.0, 7.0, 8.0, 8.0]]).to(device).type(dtype)
16
        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
17
                                                  3.0]]).to(device).type(dtype)
18
19
20
21
22
        should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]])
        out = bbox_overlaps(b1, b2, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0,
23
                                                  4.0]]).to(device).type(dtype)
24
        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
25
                                                  3.0]]).to(device).type(dtype)
26
27
28
29
        should_output = np.array([0.33333334, 0.5])
        out = bbox_overlaps(b1, b2, aligned=True, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

30
        b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).to(device).type(dtype)
31
32
        b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0],
                           [2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0,
33
                                                  3.0]]).to(device).type(dtype)
34
35
36
37
        should_output = np.array([0, 0.2, 0.5, 0.5])
        out = bbox_overlaps(b1, b2, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

38
    @pytest.mark.parametrize('device', [
39
        'cpu',
40
41
42
43
44
45
46
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
        pytest.param(
            'mlu',
            marks=pytest.mark.skipif(
Zaida Zhou's avatar
Zaida Zhou committed
47
48
49
50
                not IS_MLU_AVAILABLE, reason='requires MLU support')),
        pytest.param(
            'mps',
            marks=pytest.mark.skipif(
51
52
53
54
55
                not IS_MPS_AVAILABLE, reason='requires MPS support')),
        pytest.param(
            'npu',
            marks=pytest.mark.skipif(
                not IS_NPU_AVAILABLE, reason='requires NPU support'))
56
57
58
59
60
61
62
63
64
65
66
67
    ])
    def test_bbox_overlaps_float(self, device):
        self._test_bbox_overlaps(device, dtype=torch.float)

    @pytest.mark.parametrize('device', [
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
        pytest.param(
            'mlu',
            marks=pytest.mark.skipif(
68
69
70
71
72
                not IS_MLU_AVAILABLE, reason='requires MLU support')),
        pytest.param(
            'npu',
            marks=pytest.mark.skipif(
                not IS_NPU_AVAILABLE, reason='requires NPU support'))
73
74
75
    ])
    def test_bbox_overlaps_half(self, device):
        self._test_bbox_overlaps(device, dtype=torch.half)