test_bbox.py 1.84 KB
Newer Older
1
import numpy as np
2
import pytest
3
4
5
import torch


6
7
@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class TestBBox(object):

    def _test_bbox_overlaps(self, dtype=torch.float):

        from mmcv.ops import bbox_overlaps
        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0],
                           [7.0, 7.0, 8.0, 8.0]]).cuda().type(dtype)
        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
                                                  3.0]]).cuda().type(dtype)
        should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]])
        out = bbox_overlaps(b1, b2, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0,
                                                  4.0]]).cuda().type(dtype)
        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
                                                  3.0]]).cuda().type(dtype)
        should_output = np.array([0.33333334, 0.5])
        out = bbox_overlaps(b1, b2, aligned=True, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

        b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).cuda().type(dtype)
        b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).cuda().type(dtype)
        b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0],
                           [2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0,
                                                  3.0]]).cuda().type(dtype)
        should_output = np.array([0, 0.2, 0.5, 0.5])
        out = bbox_overlaps(b1, b2, offset=1)
        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)

    def test_bbox_overlaps_float(self):
        self._test_bbox_overlaps(torch.float)

    def test_bbox_overlaps_half(self):
        self._test_bbox_overlaps(torch.half)